Climate change demands urgent decarbonization strategies, making RES and alternative fuels critical to limiting global warming. In this context, green hydrogen, produced via RES-powered electrolysis, offers a promising solution as a storable energy vector or for the decarbonization of hard-to-abate sectors. However, green hydrogen is in an early phase of commercial deployment, and fully integrated projects are still rare. This highlights the need for advanced modeling tools capable of addressing the complexities of these systems by considering both technical and economic factors. Over the past years, numerous optimization methods and frameworks have been developed to address these challenges, each attempting to efficiently integrate renewable energy generation, electrolyzers and hydrogen storage. However, existing tools often suffer from high complexity, high computational requirements, or limited adaptability, making them difficult to employ in real-world applications. This work focuses on the development of a flexible and user-friendly design and simulation tool, adopting a parametric analysis approach to minimize the Levelized Cost of Hydrogen while considering various system configurations in terms of number of electrolyzers, RES capacity (photovoltaic and wind), and storage systems (batteries to regulates electricity supply and hydrogen to ensure demand fulfillment). Given a design, the program can be further used to evaluate the impact of external factors such as climate variability and system degradation over the plant lifetime. Key indicators, including LCOH and unmet demand, are analyzed to provide a comprehensive understanding of system behavior and efficiency. The results highlight how system configuration, location-specific RES availability, and different demand profiles influence the economic feasibility and design process of green hydrogen production. By integrating design and off-design simulation into a single tool, this framework supports data-driven decision-making for industry professionals serving as a valuable resource for designing hydrogen production plants.
Il cambiamento climatico richiede strategie di decarbonizzazione urgenti, rendendo le fonti rinnovabili e i combustibili alternativi fondamentali per limitare il riscaldamento globale. Per questo l’idrogeno verde, prodotto tramite elettrolisi alimentata da fonti rinnovabili, rappresenta una soluzione promettente come vettore energetico immagazzinabile o per la decarbonizzazione di settori difficili da elettrificare. Tuttavia è ancora in una fase di sviluppo iniziale e i progetti di questo tipo sono rari, evidenziando la necessità di strumenti di simulazione avanzati in grado di affrontare le complessità di questi sistemi, considerando sia aspetti tecnici che economici. Negli ultimi anni sono stati sviluppati numerosi framework di ottimizzazione per integrare in modo efficiente la generazione di energia rinnovabile, gli elettrolizzatori e lo stoccaggio dell’idrogeno. Tuttavia, gli strumenti esistenti soffrono spesso di elevata complessità, scarsa adattabilità e sono computazionalmente pesanti, rendendoli difficili da applicare a contesti reali. Questo lavoro si concentra sullo sviluppo di uno strumento flessibile e user-friendly per la progettazione e simulazione, adottando un approccio di analisi parametrica per minimizzare l’LCOH considerando diverse configurazioni di sistema in termini di numero di elettrolizzatori, capacità delle rinnovabili (PV ed eolico) e sistemi di stoccaggio (batterie per regolare l’energia elettrica e idrogeno per soddisfare la domanda). Data una configurazione, il programma può valutare l’impatto di fattori esterni, come la variabilità climatica e il degrado del sistema nel corso della vita dell’impianto. Indicatori chiave, tra cui LCOH e domanda non soddisfatta, vengono analizzati per fornire una comprensione completa del comportamento e dell’efficienza del sistema. I risultati evidenziano come la configurazione del sistema, la disponibilità di fonti rinnovabili e i differenti profili di domanda influenzino la fattibilità economica e il processo progettuale della produzione di idrogeno verde. Integrando design e simulazioni off-design in un unico strumento, questo framework può supportare i professionisti del settore con i dati necessari.
Development of an integrated design and simulation tool for green hydrogen production plants
Fasoli, Tommaso
2024/2025
Abstract
Climate change demands urgent decarbonization strategies, making RES and alternative fuels critical to limiting global warming. In this context, green hydrogen, produced via RES-powered electrolysis, offers a promising solution as a storable energy vector or for the decarbonization of hard-to-abate sectors. However, green hydrogen is in an early phase of commercial deployment, and fully integrated projects are still rare. This highlights the need for advanced modeling tools capable of addressing the complexities of these systems by considering both technical and economic factors. Over the past years, numerous optimization methods and frameworks have been developed to address these challenges, each attempting to efficiently integrate renewable energy generation, electrolyzers and hydrogen storage. However, existing tools often suffer from high complexity, high computational requirements, or limited adaptability, making them difficult to employ in real-world applications. This work focuses on the development of a flexible and user-friendly design and simulation tool, adopting a parametric analysis approach to minimize the Levelized Cost of Hydrogen while considering various system configurations in terms of number of electrolyzers, RES capacity (photovoltaic and wind), and storage systems (batteries to regulates electricity supply and hydrogen to ensure demand fulfillment). Given a design, the program can be further used to evaluate the impact of external factors such as climate variability and system degradation over the plant lifetime. Key indicators, including LCOH and unmet demand, are analyzed to provide a comprehensive understanding of system behavior and efficiency. The results highlight how system configuration, location-specific RES availability, and different demand profiles influence the economic feasibility and design process of green hydrogen production. By integrating design and off-design simulation into a single tool, this framework supports data-driven decision-making for industry professionals serving as a valuable resource for designing hydrogen production plants.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Fasoli_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
4.17 MB
Formato
Adobe PDF
|
4.17 MB | Adobe PDF | Visualizza/Apri |
2025_04_Fasoli_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
699.93 kB
Formato
Adobe PDF
|
699.93 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235083