The demand for high-strength metals is increasing in industries such as aerospace and automotive, driven by the need for superior mechanical performance and sustainability. Metal Additive Manufacturing (MAM) offers advantages such as material efficiency and design flexibility; however, its environmental impact remains a critical concern. This thesis proposes an integrated framework that combines mechanical property prediction with environmental impact assessment, providing a structured approach to evaluating quality and sustainability in MAM. The methodology leverages predictive modeling techniques, including Kriging-based machine learning, to estimate mechanical properties while quantifying resource consumption through Life Cycle Assessment (LCA) principles. The framework consists of a Quality Module, which is built and validated, followed by an Impact Module for environmental assessment. Two case studies demonstrate the framework’s ability to correlate process parameters with both mechanical performance and carbon footprint. Results indicate that the framework not only mathematically models these relationships but also offers insights into underlying physical phenomena. While the framework provides a robust foundation for bridging mechanical performance with sustainability metrics, further research is needed to explore its broader applicability, given the complex interactions within high-strength metal additive manufacturing and sustainable manufacturing systems.
La domanda di metalli ad alta resistenza è in aumento nei settori aerospaziale e automobilistico, grazie alla necessità di migliori prestazioni meccaniche e sostenibilità. La produzione additiva di metalli (MAM) offre vantaggi come l’efficienza dei materiali e una maggiore libertà di progettazione, ma il suo impatto ambientale resta una questione importante. Questa tesi propone un framework integrato per prevedere le proprietà meccaniche e valutare l’impatto ambientale, permettendo un’analisi strutturata della qualità e della sostenibilità nella MAM. La metodologia utilizza tecniche di modellazione predittiva, come il machine learning basato su Kriging, per stimare le proprietà meccaniche e calcolare il consumo di risorse secondo i principi della Valutazione del Ciclo di Vita (LCA). Il framework si compone di un Modulo di Qualità, costruito e validato, seguito da un Modulo di Impatto per l’analisi ambientale. Due casi studio dimostrano come il framework possa collegare i parametri di processo alle proprietà meccaniche e all’impronta di carbonio. I risultati mostrano che il framework non solo descrive matematicamente queste relazioni, ma aiuta anche a comprendere i fenomeni fisici sottostanti. Sebbene il framework offra una base solida per collegare le prestazioni meccaniche con la sostenibilità, ulteriori studi sono necessari per verificarne l’applicabilità generale, considerando le interazioni complesse nella produzione additiva di metalli e nella manifattura sostenibile.
Mapping the environmental impact of high-strength MAM
Aswin, Rahmania Agustin
2024/2025
Abstract
The demand for high-strength metals is increasing in industries such as aerospace and automotive, driven by the need for superior mechanical performance and sustainability. Metal Additive Manufacturing (MAM) offers advantages such as material efficiency and design flexibility; however, its environmental impact remains a critical concern. This thesis proposes an integrated framework that combines mechanical property prediction with environmental impact assessment, providing a structured approach to evaluating quality and sustainability in MAM. The methodology leverages predictive modeling techniques, including Kriging-based machine learning, to estimate mechanical properties while quantifying resource consumption through Life Cycle Assessment (LCA) principles. The framework consists of a Quality Module, which is built and validated, followed by an Impact Module for environmental assessment. Two case studies demonstrate the framework’s ability to correlate process parameters with both mechanical performance and carbon footprint. Results indicate that the framework not only mathematically models these relationships but also offers insights into underlying physical phenomena. While the framework provides a robust foundation for bridging mechanical performance with sustainability metrics, further research is needed to explore its broader applicability, given the complex interactions within high-strength metal additive manufacturing and sustainable manufacturing systems.File | Dimensione | Formato | |
---|---|---|---|
2024_04_Aswin.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Complete thesis text with abstracts
Dimensione
4.88 MB
Formato
Adobe PDF
|
4.88 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235087