Hydrogen has emerged as a crucial component of the energy transition due to its potential as a clean energy carrier, but its large-scale implementation faces significant challenges related to storage and distribution, primarily due to its low volumetric density. In this context, Liquid Organic Hydrogen Carriers (LOHCs) offer a promising alternative, providing a safer and more efficient solution for this purpose. This thesis explores an emerging LOHC pair, gamma-butyrolactone (GBL) and 1,4-butanediol (BDO), assessing its feasibility from different perspectives. A rigorous thermodynamic analysis is conducted to accurately model the system, focusing on the selection of an appropriate model with the determination of binary interaction parameters for key components. These findings form the basis for process simulations that considered realistic operating conditions, including reaction conversion, byproduct formation, and separation challenges. Detailed process layouts for both hydrogenation and dehydrogenation are proposed, incorporating solutions to mitigate inefficiencies, such as optimizing hydrogen recycling to reduce losses. Building upon these simulations, a techno-economic analysis is performed to evaluate the economic viability of the GBL/BDO system. Despite its potential advantages, such as a lower dehydrogenation enthalpy compared to conventional LOHCs, the results indicate that the current costs remain prohibitive, mainly due to the high hydrogenation expenses, the high melting point of BDO and the initial cost of the raw material. A sensitivity analysis revealed that optimizing the hydrogen-to-GBL ratio could significantly enhance cost-efficiency, highlighting the importance of catalyst development to enable operation under milder conditions. Overall, this study demonstrates that the GBL/BDO system is not yet a commercially viable LOHC solution. However, it provides a comprehensive framework for future research, outlining key areas for improvement.
L'idrogeno è un elemento chiave nella transizione energetica grazie al suo potenziale come vettore pulito, ma la sua implementazione su larga scala presenta sfide legate a stoccaggio e distribuzione, a causa della bassa densità volumetrica. In questo contesto, i Liquid Organic Hydrogen Carriers (LOHC) rappresentano un’alternativa promettente, offrendo soluzioni più sicure ed efficienti. Questa tesi analizza una coppia LOHC emergente, gamma-butirrolattone (GBL) e 1,4-butanediolo (BDO), valutandone la fattibilità da diverse prospettive. È stata condotta un’analisi termodinamica rigorosa per modellare il sistema, con particolare attenzione alla selezione del modello più adatto e alla determinazione dei parametri di interazione binaria tra i componenti chiave. I risultati ottenuti costituiscono la base per le simulazioni di processo, che considerano condizioni operative realistiche, inclusi grado di conversione, formazione di sottoprodotti e problematiche di separazione. Sono stati proposti layout dettagliati per idrogenazione e deidrogenazione, integrando soluzioni per mitigare inefficienze, come l’ottimizzazione del riciclo dell’idrogeno per ridurre le perdite. Sulla base di queste simulazioni, è stata effettuata un’analisi tecno-economica per valutare la sostenibilità del sistema GBL/BDO. Nonostante alcuni vantaggi, come un’entalpia di deidrogenazione inferiore rispetto ai LOHCs convenzionali, i costi attuali rimangono proibitivi, principalmente a causa dell’elevato costo dell’idrogenazione, dell’alto punto di fusione del BDO e del costo della materia prima. Un'analisi di sensibilità ha dimostrato che ottimizzare il rapporto H2/GBL migliorerebbe l’efficienza economica, sottolineando l'importanza dello sviluppo di catalizzatori capaci di operare in condizioni meno severe. Nel complesso, lo studio mostra che il sistema GBL/BDO non è ancora una soluzione LOHC commercialmente valida, ma fornisce un quadro utile per la ricerca futura, individuando le aree chiave da ottimizzare per aumentarne la competitività.
A comprehensive study of the Gamma-butyrolactone and 1,4-Butanediol LOHC system
Carazzai, Elisabetta
2023/2024
Abstract
Hydrogen has emerged as a crucial component of the energy transition due to its potential as a clean energy carrier, but its large-scale implementation faces significant challenges related to storage and distribution, primarily due to its low volumetric density. In this context, Liquid Organic Hydrogen Carriers (LOHCs) offer a promising alternative, providing a safer and more efficient solution for this purpose. This thesis explores an emerging LOHC pair, gamma-butyrolactone (GBL) and 1,4-butanediol (BDO), assessing its feasibility from different perspectives. A rigorous thermodynamic analysis is conducted to accurately model the system, focusing on the selection of an appropriate model with the determination of binary interaction parameters for key components. These findings form the basis for process simulations that considered realistic operating conditions, including reaction conversion, byproduct formation, and separation challenges. Detailed process layouts for both hydrogenation and dehydrogenation are proposed, incorporating solutions to mitigate inefficiencies, such as optimizing hydrogen recycling to reduce losses. Building upon these simulations, a techno-economic analysis is performed to evaluate the economic viability of the GBL/BDO system. Despite its potential advantages, such as a lower dehydrogenation enthalpy compared to conventional LOHCs, the results indicate that the current costs remain prohibitive, mainly due to the high hydrogenation expenses, the high melting point of BDO and the initial cost of the raw material. A sensitivity analysis revealed that optimizing the hydrogen-to-GBL ratio could significantly enhance cost-efficiency, highlighting the importance of catalyst development to enable operation under milder conditions. Overall, this study demonstrates that the GBL/BDO system is not yet a commercially viable LOHC solution. However, it provides a comprehensive framework for future research, outlining key areas for improvement.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Carazzai_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
3.83 MB
Formato
Adobe PDF
|
3.83 MB | Adobe PDF | Visualizza/Apri |
2025_04_Carazzai_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235116