Water scarcity is a growing global issue caused by increasing population, climate change, and rising demands from agriculture, industry, and households. Traditional hydrological models used to assess water scarcity are accurate but require extensive time and computational resources. To address this limitation, this study integrates machine learning (ML) techniques with hydrological models to predict Blue Water Scarcity (BWS) more efficiently. Various ML methods, including XGBoost, Random Forest, LightGBM, and Convolutional Neural Networks (CNN), were tested using historical water demand data, climate variables (temperature and precipitation), and hydrological parameters such as rainfall, runoff, and groundwater recharge. Among these, LightGBM performed best, providing fast and accurate predictions while significantly reducing computational time. Results indicate increasing water scarcity worldwide, with critical regions including South Asia, North Africa, the Middle East, and parts of North and South America. This trend highlights the urgent need for enhanced water management strategies. The findings underscore the critical role of ML as a complementary tool to traditional hydrological models, improving predictive capacity, uncertainty quantification, and decisionmaking in water resource management. This study contributes to a data-driven, adaptive approach to global water scarcity assessments, offering a foundation for improved water governance and policy formulation. The proposed methodology supports informed decision-making and enhances water resource management strategies globally.
La scarsità d’acqua è una sfida globale sempre più critica, aggravata dalla crescita della popolazione, dai cambiamenti climatici e dall’aumento della domanda idrica nei settori agricolo, industriale e domestico. I modelli idrologici tradizionali, sebbene efficaci, richiedono ingenti risorse computazionali e mostrano limitata adattabilità per analisi in tempo reale. Per superare queste limitazioni, questo studio integra tecniche di apprendimento automatico (ML) con la modellazione idrologica per migliorare la previsione della Scarsità di Acqua Blu (BWS) in modo efficiente. Sono stati testati diversi modelli ML, tra cui XGBoost, Random Forest, LightGBM e Reti Neurali Convoluzionali (CNN), utilizzando dati storici sulla domanda idrica, variabili climatiche (temperatura e precipitazioni) e parametri idrologici come piovosità, deflusso e ricarica delle falde acquifere. Tra questi, LightGBM ha dimostrato la maggiore precisione predittiva e efficienza computazionale, consentendo una valutazione della BWS rapida e affidabile. I risultati indicano un peggioramento della scarsità idrica a livello globale, con aree ad alto rischio che includono l’Asia meridionale, il Nord Africa, il Medio Oriente e parti del Nord e Sud America. Queste evidenze sottolineano l’urgente necessità di strategie di gestione idrica basate sui dati per mitigare le future crisi idriche. Questo studio evidenzia il ruolo fondamentale dell’apprendimento automatico come strumento complementare ai modelli idrologici tradizionali, migliorando la precisione predittiva, la quantificazione dell’incertezza e il processo decisionale nella gestione delle risorse idriche. Sviluppando un framework di valutazione adattivo, scalabile ed efficiente, questa ricerca contribuisce al miglioramento della governance idrica, alla formulazione di politiche e all’allocazione sostenibile delle risorse.
Combining process-based and data-driven approaches to detect drivers and project changes in blue water scarcity
Barazandeh, Saeid
2023/2024
Abstract
Water scarcity is a growing global issue caused by increasing population, climate change, and rising demands from agriculture, industry, and households. Traditional hydrological models used to assess water scarcity are accurate but require extensive time and computational resources. To address this limitation, this study integrates machine learning (ML) techniques with hydrological models to predict Blue Water Scarcity (BWS) more efficiently. Various ML methods, including XGBoost, Random Forest, LightGBM, and Convolutional Neural Networks (CNN), were tested using historical water demand data, climate variables (temperature and precipitation), and hydrological parameters such as rainfall, runoff, and groundwater recharge. Among these, LightGBM performed best, providing fast and accurate predictions while significantly reducing computational time. Results indicate increasing water scarcity worldwide, with critical regions including South Asia, North Africa, the Middle East, and parts of North and South America. This trend highlights the urgent need for enhanced water management strategies. The findings underscore the critical role of ML as a complementary tool to traditional hydrological models, improving predictive capacity, uncertainty quantification, and decisionmaking in water resource management. This study contributes to a data-driven, adaptive approach to global water scarcity assessments, offering a foundation for improved water governance and policy formulation. The proposed methodology supports informed decision-making and enhances water resource management strategies globally.File | Dimensione | Formato | |
---|---|---|---|
Thesis___SAEID_BARAZANDEH_10818996.pdf
non accessibile
Descrizione: Full Thesis
Dimensione
10.33 MB
Formato
Adobe PDF
|
10.33 MB | Adobe PDF | Visualizza/Apri |
Executive_Summary___SAEID_BARAZANDEH_10818996.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
979.68 kB
Formato
Adobe PDF
|
979.68 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235121