Tactile sensing is a key area of research to enhance robotic hands to achieve human-like manipulation skills. One of the fundamental pieces of information obtainable from tactile sensors is three-dimensional contact force vector. With the knowledge of multiple thee-dimensional contact force vectors, grasp planners are able to account for slippage and close the loop of control strategies used in manipulation. This thesis focuses on the design of a tactile sensor based on magnetometers and magnetized membranes--soft materials with embedded magnetic particles. We investigate how the magnetized membrane can be tailored to design a tactile sensor capable of achieving model-based decoupled 3D force sensing, ensuring ease of manufacturing, ease of calibration, miniaturization, modular design of arrays and cost-effectiveness. To address this, we adopt a model-based approach to first understand and predict the sensor’s readouts. By imposing a sinusoidal radial magnetization over the membrane we are able to anticipate the sensor’s performance characteristics and focus on achieving three-dimensional force sensing with independent-axis calibration. We present a design methodology for a new family of sensors featuring magnetometer, a silicone substrate and a magnetized membrane. Additionally we prototype and characterize one sensor to validate this framework. Our contributions to the field tactile sensors include the successful demonstration of a model-based 3D force sensing mechanism. Experimental tests conducted with the sensor prototype confirm the effectiveness of force decoupling, validate the 3D force sensing model, and demonstrate the ease of calibration.
I sensori tattili rappresentano un'area di ricerca fondamentale per migliorare le mani robotiche e permettere loro di raggiungere abilità di manipolazione simili a quelle umane. Una delle informazioni essenziali fornite dai sensori tattili è il vettore tridimensionale della forza di contatto, con il quale è possibile controllare la presa di oggetti e rilevare lo slittamento. Questa tesi si concentra sulla progettazione di un sensore tattile basato su magnetometri e membrane magnetizzate, ossia elastomeri contenenti particelle magnetiche. L'obiettivo è lo sviluppo di un sensore dotato di una membrana magnetizzata che consenta la rilevazione tridimensionale delle forze con misure indipendenti lungo ciascun asse. Per ottenere tale proprietà, si è utilizzata una magnetizzazione periodica radiale, garantendo al tempo stesso facilità di produzione e calibrazione, miniaturizzazione, modularità per l’integrazione in array ed economicità. Presentiamo una metodologia di design per una nuova classe di sensori tattili, composti da un magnetometro, un substrato siliconico e una membrana magnetizzata. La validazione sperimentale del prototipo dimostra l’efficacia della metodologia di disaccoppiamento della forza, la validità del modello predittivo e la semplicità della calibrazione, confermando il potenziale di questa tecnologia per applicazioni nel campo delle mani robotiche.
Design, modeling, and fabrication of a magnetized membrane-based tactile sensor for contact force measurement in a robotic hand
Corso, Vanni
2023/2024
Abstract
Tactile sensing is a key area of research to enhance robotic hands to achieve human-like manipulation skills. One of the fundamental pieces of information obtainable from tactile sensors is three-dimensional contact force vector. With the knowledge of multiple thee-dimensional contact force vectors, grasp planners are able to account for slippage and close the loop of control strategies used in manipulation. This thesis focuses on the design of a tactile sensor based on magnetometers and magnetized membranes--soft materials with embedded magnetic particles. We investigate how the magnetized membrane can be tailored to design a tactile sensor capable of achieving model-based decoupled 3D force sensing, ensuring ease of manufacturing, ease of calibration, miniaturization, modular design of arrays and cost-effectiveness. To address this, we adopt a model-based approach to first understand and predict the sensor’s readouts. By imposing a sinusoidal radial magnetization over the membrane we are able to anticipate the sensor’s performance characteristics and focus on achieving three-dimensional force sensing with independent-axis calibration. We present a design methodology for a new family of sensors featuring magnetometer, a silicone substrate and a magnetized membrane. Additionally we prototype and characterize one sensor to validate this framework. Our contributions to the field tactile sensors include the successful demonstration of a model-based 3D force sensing mechanism. Experimental tests conducted with the sensor prototype confirm the effectiveness of force decoupling, validate the 3D force sensing model, and demonstrate the ease of calibration.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Corso_Thesis_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
521.39 kB
Formato
Adobe PDF
|
521.39 kB | Adobe PDF | Visualizza/Apri |
2025_04_Corso_Thesis_01.pdf
non accessibile
Descrizione: Testo Tesi
Dimensione
5.16 MB
Formato
Adobe PDF
|
5.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235180