The production of nanocarriers has become crucial in the bio-pharmaceutical field, and among the different synthetic techniques, microfluidic has emerged as an innovative technology, offering precise control over reaction conditions and ensuring high reproducibility. This thesis work explores the design, fabrication, and application of a modular microfluidic system intended for the continuous and controlled production of soft nanoparticles. The fabrication method exploited is the Two Photon Polymerization (2PP) 3D printing, a versatile microfabrication technique able to reach the precision up to 100 nm. The modular system allows for easy reconfiguration of the experimental setup, enabling rapid testing of different synthesis conditions. In this synthesis approach, the constituents of the nanoparticles (Polyethylene Glycol and Hyaluronic Acid) are mixed in the first module of the setup. Successively, the mixed solution is flowed into a droplet generator system, where mineral oil is introduced to generate a microemulsion. In the last section of the microfluidic system an aqueous phase, containing functionalizing agents for tumor targeting, is introduced. This third module is aimed at functionalizing nanoparticles, retrieved from the system outlet. Extensive characterization analyses are then conducted to evaluate dimension, composition, grafting efficiency and stability. Additionally, drug release testing and MTT assays are performed to demonstrate nanoparticles’ potential as a safe and effective therapeutic alternative to conventional drug delivery The results demonstrate how the microfluidic approach can improve nanoparticle size homogeneity and stability compared to conventional batch methods. This work compares the potential of the developed system with current production strategies, highlighting the contribution of modular microfluidics to advancing nanoparticle synthesis, reducing resource consumption and waste. Notably, this work highlights the use of 2PP for the fabrication of microfluidic structures, enhancing its versatility and innovation in nanotechnology and biomedical applications.
La produzione di nanocarriers ha acquisito un ruolo cruciale nel settore biofarmaceutico e, tra le diverse tecniche di sintesi, quella microfluidica è emersa come una tecnologia innovativa, in grado di offrire un controllo preciso sulle condizioni di reazione e garantire un'elevata riproducibilità. Questo lavoro di tesi esplora la progettazione, la fabbricazione e l'applicazione di un sistema microfluidico modulare destinato alla produzione continua e controllata di soft NPs. Il metodo di fabbricazione impiegato è la tecnica della stampa 3D tramite polimerizzazione a due fotoni (2PP), una metodologia di micro-fabbricazione versatile che può raggiungere risoluzioni fino a 100 nm. Il sistema modulare consente una facile riconfigurazione dell'assetto sperimentale, facilitando la rapida sperimentazione di diverse condizioni di sintesi. In questo approccio sintetico, i costituenti delle nanoparticelle (Polietilene Glicole e Acido Ialuronico) vengono inizialmente miscelati nel primo modulo del sistema. Successivamente, il flusso viene introdotto in un generatore di microgocce, dove l’aggiunta di olio minerale genera una microemulsione. Nell’ultima sezione del sistema microfluidico una fase acquosa, contenente agenti funzionalizzanti per il targeting tumorale, viene introdotta e le nanoparticelle funzionalizzate vengono infine recuperate dal sistema. Sono state condotte approfondite analisi di caratterizzazione per valutare le dimensioni, la composizione, l’efficacia della decorazione e la stabilità delle nanoparticelle. Inoltre, sono stati eseguiti test di rilascio del farmaco e saggi MTT per dimostrare il potenziale delle nanoparticelle come alternativa terapeutica sicura ed efficace rispetto ai metodi convenzionali di somministrazione dei farmaci. I risultati ottenuti dimostrano come l’approccio microfluidico migliori l’omogeneità dimensionale e la stabilità delle nanoparticelle rispetto ai metodi convenzionali in batch, evidenziando il contributo della microfluidica modulare nell’ottimizzazione della sintesi di nanoparticelle, riducendo il consumo di risorse e la produzione di rifiuti. In particolare, questa ricerca sottolinea l’uso della tecnica 2PP per la fabbricazione di strutture microfluidiche, mettendone in luce la versatilità e l’innovazione nel campo delle nanotecnologie e delle applicazioni biomediche.
Formulation of soft nanoparticles for tumor treatment through a versatile and modular 3D printed microfluidic platform
Morgera, Filippo Lars
2023/2024
Abstract
The production of nanocarriers has become crucial in the bio-pharmaceutical field, and among the different synthetic techniques, microfluidic has emerged as an innovative technology, offering precise control over reaction conditions and ensuring high reproducibility. This thesis work explores the design, fabrication, and application of a modular microfluidic system intended for the continuous and controlled production of soft nanoparticles. The fabrication method exploited is the Two Photon Polymerization (2PP) 3D printing, a versatile microfabrication technique able to reach the precision up to 100 nm. The modular system allows for easy reconfiguration of the experimental setup, enabling rapid testing of different synthesis conditions. In this synthesis approach, the constituents of the nanoparticles (Polyethylene Glycol and Hyaluronic Acid) are mixed in the first module of the setup. Successively, the mixed solution is flowed into a droplet generator system, where mineral oil is introduced to generate a microemulsion. In the last section of the microfluidic system an aqueous phase, containing functionalizing agents for tumor targeting, is introduced. This third module is aimed at functionalizing nanoparticles, retrieved from the system outlet. Extensive characterization analyses are then conducted to evaluate dimension, composition, grafting efficiency and stability. Additionally, drug release testing and MTT assays are performed to demonstrate nanoparticles’ potential as a safe and effective therapeutic alternative to conventional drug delivery The results demonstrate how the microfluidic approach can improve nanoparticle size homogeneity and stability compared to conventional batch methods. This work compares the potential of the developed system with current production strategies, highlighting the contribution of modular microfluidics to advancing nanoparticle synthesis, reducing resource consumption and waste. Notably, this work highlights the use of 2PP for the fabrication of microfluidic structures, enhancing its versatility and innovation in nanotechnology and biomedical applications.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Morgera_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri |
2025_04_Morgera_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
7.69 MB
Formato
Adobe PDF
|
7.69 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235207