This thesis is part of a project aimed at developing and validating the digital twin of the Microlino electric quadricycle in the VI-CarRealTime platform. In a close collaboration between Lorenzo Florio, Federico Mistri, and Andrea Musazzi, the project was carried out and then divided into two main efforts: one focusing on the vehicle’s mechanical characterization (“Mechanical characterization of Microlino”), the other on constructing its digital model and running validation tests (“Digital twin of Microlino”). A broad number of measurements was carried out to determine the Microlino key mechanical properties. These involved the determination of the suspension geometry, the stiffness of the springs and bushings, and the damping characteristic curves of the dampers. The inertial behaviour of the vehicle was also investigated, using state of the art technologies such as InTenso+ to identify the mass distribution and MoLAS to test the tyres. The steering and braking system was subjected to a simpler examination to identify the steering ratio and the braking components size, whereas the electric powertrain comprises of internal permanent magnet motor and lithium-ion battery. Following the measurement, an outdoor manoeuvre set was performed to study the real-world dynamics of the Microlino in vertical, longitudinal, and lateral dynamics. These tests, namely constant velocity bump test, braking in a straight line, and constant-radius steering pad, provided the experimental data necessary to validate digital model. Repeating the exact manoeuvres in the virtual environment and using the same input parameters and processing methods, it was possible to compare the simulated results with the measured ones and to verify the correlation. Ultimately, the work done in this thesis supplemented an accurate experimental characterization of the Microlino, laying the groundwork for an accurate digital twin. Such an outcome demonstrates the way a structured process combining accurate measurements, well-designed tests, teamwork, and dependable simulation tools, can successfully be applied to model and validate a modern electric quadricycle.
Questa tesi fa parte di un progetto finalizzato allo sviluppo e alla validazione del gemello digitale del quadriciclo elettrico Microlino all’interno della piattaforma VI-CarRealTime. In stretta collaborazione tra Lorenzo Florio, Federico Mistri e Andrea Musazzi, il progetto è stato realizzato e poi suddiviso in due tesi: una dedicato alla caratterizzazione meccanica del veicolo (“Mechanical characterization of Microlino”) e l’altra alla costruzione del suo modello digitale e all’esecuzione di test di validazione (“Digital twin of Microlino”). È stata condotta una vasta serie di misurazioni per determinare le principali proprietà meccaniche del Microlino. Queste hanno riguardato la definizione della geometria delle sospensioni, la rigidezza di molle e boccole, nonché le curve caratteristiche di smorzamento degli ammortizzatori. È stato inoltre analizzato il comportamento inerziale del veicolo, avvalendosi di tecnologie all’avanguardia come InTenso+ per identificare la distribuzione delle masse e MoLAS per effettuare test sugli pneumatici. Il sistema sterzante e quello frenante sono stati sottoposti a un esame più semplice per individuare il rapporto di sterzata e la dimensione dei componenti frenanti, mentre il gruppo propulsore elettrico comprende un motore a magneti permanenti interni e una batteria agli ioni di litio. Al termine delle misurazioni, è stata eseguita una serie di test su strada per studiare il comportamento dinamico reale del Microlino negli ambiti verticale, longitudinale e laterale. Queste prove, in particolare il passaggio sul dosso a velocità costante, la frenata in linea retta e la sterzata a raggio costante, hanno fornito i dati sperimentali necessari a validare il modello digitale. Ripetendo esattamente le stesse manovre in ambiente virtuale e utilizzando gli stessi parametri e metodi di elaborazione, è stato possibile confrontare i risultati simulati con quelli misurati e verificarne la correlazione. In definitiva, il lavoro svolto in questa tesi ha caratterizzato sperimentalmente il Microlino, ponendo le basi per un gemello digitale accurato. Tale risultato dimostra come un processo strutturato, fondato su misurazioni precise, test ben progettati, lavoro di squadra e strumenti di simulazione affidabili, possa essere applicato con successo per modellare e validare un moderno quadriciclo elettrico.
Mechanical characterization of Microlino
Musazzi, Andrea
2024/2025
Abstract
This thesis is part of a project aimed at developing and validating the digital twin of the Microlino electric quadricycle in the VI-CarRealTime platform. In a close collaboration between Lorenzo Florio, Federico Mistri, and Andrea Musazzi, the project was carried out and then divided into two main efforts: one focusing on the vehicle’s mechanical characterization (“Mechanical characterization of Microlino”), the other on constructing its digital model and running validation tests (“Digital twin of Microlino”). A broad number of measurements was carried out to determine the Microlino key mechanical properties. These involved the determination of the suspension geometry, the stiffness of the springs and bushings, and the damping characteristic curves of the dampers. The inertial behaviour of the vehicle was also investigated, using state of the art technologies such as InTenso+ to identify the mass distribution and MoLAS to test the tyres. The steering and braking system was subjected to a simpler examination to identify the steering ratio and the braking components size, whereas the electric powertrain comprises of internal permanent magnet motor and lithium-ion battery. Following the measurement, an outdoor manoeuvre set was performed to study the real-world dynamics of the Microlino in vertical, longitudinal, and lateral dynamics. These tests, namely constant velocity bump test, braking in a straight line, and constant-radius steering pad, provided the experimental data necessary to validate digital model. Repeating the exact manoeuvres in the virtual environment and using the same input parameters and processing methods, it was possible to compare the simulated results with the measured ones and to verify the correlation. Ultimately, the work done in this thesis supplemented an accurate experimental characterization of the Microlino, laying the groundwork for an accurate digital twin. Such an outcome demonstrates the way a structured process combining accurate measurements, well-designed tests, teamwork, and dependable simulation tools, can successfully be applied to model and validate a modern electric quadricycle.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Musazzi.pdf
non accessibile
Dimensione
28.85 MB
Formato
Adobe PDF
|
28.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235212