Granular materials exhibit complex mechanical behavior, transitioning between solid-like and fluid-like states depending on the applied stress conditions. Traditional local rheo logical models, such as the µ(I)-rheology, provide useful descriptions of dense granular f lows but fail to capture essential nonlocal effects, such as cooperative grain motion and size-dependent flow behavior. To address these limitations, the Nonlocal Granular Flu idity (NGF) model, developed by Ken Kamrin, introduces a granular fluidity field that diffuses mechanical information over characteristic length scales, thereby enhancing the predictive capabilities of granular flow models. This thesis focuses on the theoretical for mulation, numerical implementation, and validation of the NGF model. The governing equations are discretized and implemented within a computational framework using the Particle Finite Element Method (PFEM), a Lagrangian approach particularly suited for highly deformable systems such as granular flows. Numerical simulations confirm the model’s ability to capture flow transitions, particle-size-dependent behavior, and nonlocal shear effects, contributing to the advancement of more accurate continuum models for granular materials with applications in geophysics, industrial processing, and planetary exploration.
I materiali granulari presentano una risposta meccanica complessa, con comportamenti sia solidi che fluidi a seconda delle condizioni di stress applicato. I modelli reologici locali tradizionali, come la µ(I)-rheology, forniscono una descrizione utile dei flussi densi, ma non riescono a catturare effetti non locali fondamentali, come il moto cooperativo dei grani e la dipendenza del flusso dalla dimensione delle particelle. Per superare queste lim itazioni, il modello di Fluidità Granulare Non Locale (NGF), sviluppato da Ken Kamrin, introduce un campo di fluidità granulare che diffonde l’informazione meccanica su scale di lunghezza caratteristiche, migliorando la capacità predittiva dei modelli di flusso gran ulare. Questa tesi si concentra sulla formulazione teorica, l’implementazione numerica e la validazione del modello NGF. Per la discretizzazione delle equazioni governanti e la loro implementazione computazionale, viene utilizzato il Particle Finite Element Method (PFEM), un metodo Lagrangiano particolarmente adatto per sistemi altamente deforma bili come i flussi granulari. Le simulazioni numeriche confermano la capacità del modello di descrivere le transizioni di flusso, la dipendenza dalle dimensioni delle particelle e gli effetti di shear non locale, contribuendo allo sviluppo di modelli continui più accurati per materiali granulari con applicazioni in geofisica, processi industriali ed esplorazione planetaria.
Particle finite element method for granular materials
CAVALLARI, GIULIA
2024/2025
Abstract
Granular materials exhibit complex mechanical behavior, transitioning between solid-like and fluid-like states depending on the applied stress conditions. Traditional local rheo logical models, such as the µ(I)-rheology, provide useful descriptions of dense granular f lows but fail to capture essential nonlocal effects, such as cooperative grain motion and size-dependent flow behavior. To address these limitations, the Nonlocal Granular Flu idity (NGF) model, developed by Ken Kamrin, introduces a granular fluidity field that diffuses mechanical information over characteristic length scales, thereby enhancing the predictive capabilities of granular flow models. This thesis focuses on the theoretical for mulation, numerical implementation, and validation of the NGF model. The governing equations are discretized and implemented within a computational framework using the Particle Finite Element Method (PFEM), a Lagrangian approach particularly suited for highly deformable systems such as granular flows. Numerical simulations confirm the model’s ability to capture flow transitions, particle-size-dependent behavior, and nonlocal shear effects, contributing to the advancement of more accurate continuum models for granular materials with applications in geophysics, industrial processing, and planetary exploration.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Cavallari_Tesi.pdf
solo utenti autorizzati a partire dal 12/03/2026
Dimensione
4.08 MB
Formato
Adobe PDF
|
4.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235287