Bio-based polymers were identified as a possible solution to address the exponential increase of global plastic production. In this context, starch has gained significant attention. It consists of repeating anhydroglucose units (AGU) and it is composed of two different polymers: amylose and amylopectin, exhibiting different properties. Although starch possesses highly attractive features, such as low cost, abundance and biodegradability, its physical properties – including glass transition temperature, hydrophilicity, and brittleness - limit its industrial applicability in its native form. The chemical functionalization of starch backbone could provide for essential modification to enhance its properties and make it a viable alternative to petroleum-based polymers. It is in this landscape that the present thesis work fits. This study investigates starch esterification, focusing primarily on a kinetic study conducted in a batch reactor and an explorative assessment of a potential scaling-up using via reactive extrusion. The first study involved Fischer esterification in a discountinouos reactor, performed at two different temperatures (90°C and 110°C), using two distinct fatty acids, in different concentrations - undecylenic acid (C11) and oleic acid (C18), to assess the effect of carbon chain length on the esterification process – and at different reaction times. This reaction is particularly relevant to provide insights about starch hydrophilicity; indeed, the introduction of ester groups reduces the number of available hydroxyl (-OH) groups, thereby decreasing water affinity. Furthermore, the feasibility study of a solvent-free and catalyst-free esterification process via reactive extrusion was studied as a possible alternative for industrial scale-up. Compared to batch esterification, reactive extrusion offers advantages such as a more sustainable process, fewer processing steps, and increased productivity. The results demonstrated that by tuning the different reaction parameters in batch conditions, it is possible to obtain esterified products with varying efficiency according to the appropriate selection of temperature, reaction time, and fatty acid type. In particular, maximum DS achieved was 0.875 for undecylenic acid and 0.205 for oleic acid, highlighting the impact of chain length on the substitution efficiency. Additionally, the hydrophilicity reduction of extruded products was assessed, resulting in a 25-30% increase of water contact angle and a degradability up to 90%, in acidic conditions. These outcomes highlight starch esterification as a promising route, suggesting that additional optimizations could enhance hydrophobicity, expanding its potential to further investigations.
I polimeri bio-based sono stati individuati come una possibile soluzione per affrontare l’aumento esponenziale della produzione globale delle plastiche. In questo contesto, l’amido ha suscitato grande interesse. Esso è costituito da unità ripetitive anidroglicosidiche (AGU) composto da due polimeri distinti: amilosio e amilopectina, che presentano proprietà differenti. Sebbene l’amido presenti caratteristiche molto interessanti, come basso costo, grande disponibilità e biodegradabilità, le sue proprietà fisiche – incluse la temperatura di transizione vetrosa, l’idrofilicità, e la fragilità – limitano il suo impiego industriale nella sua forma nativa. La funzionalizzazione chimica della struttura dell’amido può consentire modifiche essenziali per migliorarne le prestazioni, rendendolo un’alternativa concreta ai polimeri derivati dal petrolio. È in questo scenario che si inserisce il presente lavoro di tesi. Questo studio investiga l’esterificazione di amido, focalizzandosi su un’analisi cinetica condotta in un reattore batch e su una valutazione esplorativa di un possibile scale-up attraverso il processo di estrusione reattiva. La prima fase della ricerca ha coinvolto l'esterificazione di Fischer in un reattore discontinuo, eseguita a due diverse temperature (90°C e 110°C) utilizzando due tipi di acidi grassi a diverse concentrazioni – acido undecilenico e acido oleico – per valutare l’effetto della lunghezza di catena carboniosa sul processo di esterificazione, e a diversi tempi di reazione. Questa reazione è particolarmente rilevante per comprendere l’impatto sull’idrofilicità dell’amido; infatti, l’introduzione di gruppi esterei riduce il numero di gruppi ossidrilici disponibili (-OH), diminuendo così l’affinità con l’acqua. Inoltre, è stato studiato un processo di esterificazione privo di solventi e catalizzatore mediante estrusione reattiva, considerato una possibile alternativa per uno scale-up industriale. Rispetto all’esterificazione in batch, l’estrusone reattiva offre diversi vantaggi, come un processo più sostenibile, una riduzione delle fasi di lavorazione e un aumento della produttività. I risultati hanno dimostrato che, regolando opportunatamente i parametri di reazione nelle condizioni batch, è possibile ottenere prodotti esterificati con efficienza variabile in base alla selezione di temperatura, tempo di reazione e tipo di acido grasso. In particolare, il massimo grado di sostituzione (DS) raggiunto è stato 0.875 per l’acido undecilenico e 0.205 per l’acido oleico, evidenziando l’impatto della lunghezza della catena carboniosa sull’efficienza di sostituzione. Inoltre, è stata valutata la riduzione dell’idrofilictà dei prodotti estrusi, con un aumento dell’angolo di contatto con l’acqua del 25-30% e una degradabilità fino al 90% in condizioni acide. Questi risultati evidenziano l’esterificazione dell’amido come un approccio promettente, suggerendo che ulteriori ottimizzazioni potrebbero migliorarne l’idrofobicità e ampliare il suo potenziale per future ricerche.
Insights into starch esterification with fatty acids: kinetic investigation in a discontinuous batch system and potential scale-up via reactive extrusion
DE LUCA, ALESSANDRO
2024/2025
Abstract
Bio-based polymers were identified as a possible solution to address the exponential increase of global plastic production. In this context, starch has gained significant attention. It consists of repeating anhydroglucose units (AGU) and it is composed of two different polymers: amylose and amylopectin, exhibiting different properties. Although starch possesses highly attractive features, such as low cost, abundance and biodegradability, its physical properties – including glass transition temperature, hydrophilicity, and brittleness - limit its industrial applicability in its native form. The chemical functionalization of starch backbone could provide for essential modification to enhance its properties and make it a viable alternative to petroleum-based polymers. It is in this landscape that the present thesis work fits. This study investigates starch esterification, focusing primarily on a kinetic study conducted in a batch reactor and an explorative assessment of a potential scaling-up using via reactive extrusion. The first study involved Fischer esterification in a discountinouos reactor, performed at two different temperatures (90°C and 110°C), using two distinct fatty acids, in different concentrations - undecylenic acid (C11) and oleic acid (C18), to assess the effect of carbon chain length on the esterification process – and at different reaction times. This reaction is particularly relevant to provide insights about starch hydrophilicity; indeed, the introduction of ester groups reduces the number of available hydroxyl (-OH) groups, thereby decreasing water affinity. Furthermore, the feasibility study of a solvent-free and catalyst-free esterification process via reactive extrusion was studied as a possible alternative for industrial scale-up. Compared to batch esterification, reactive extrusion offers advantages such as a more sustainable process, fewer processing steps, and increased productivity. The results demonstrated that by tuning the different reaction parameters in batch conditions, it is possible to obtain esterified products with varying efficiency according to the appropriate selection of temperature, reaction time, and fatty acid type. In particular, maximum DS achieved was 0.875 for undecylenic acid and 0.205 for oleic acid, highlighting the impact of chain length on the substitution efficiency. Additionally, the hydrophilicity reduction of extruded products was assessed, resulting in a 25-30% increase of water contact angle and a degradability up to 90%, in acidic conditions. These outcomes highlight starch esterification as a promising route, suggesting that additional optimizations could enhance hydrophobicity, expanding its potential to further investigations.File | Dimensione | Formato | |
---|---|---|---|
Master Thesis Alessandro de Luca.pdf
non accessibile
Descrizione: Executive summary + Master thesis
Dimensione
8.59 MB
Formato
Adobe PDF
|
8.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235339