This thesis explores optimized path planning for the prototyping of lightweight bow windows using the Wire-Arc Additive Manufacturing (WAAM) process. It begins with a critical review of the Directed Energy Deposition (DED) family of processes, emphasizing WAAM’s potential for architectural applications. Aimed at overcoming the limitations of planar slicing techniques, the study introduces a hybrid slicing methodology combining planar and non-planar strategies to enhance the structural integrity and aesthetic feasibility of WAAM-printed components. This research builds upon the concept introduced in the Master's thesis on designing and prototyping a light-deflective bow window using WAAM by Li Causi, Lucia [39]. It is part of the broader RocWAAM project at the Department of Mechanics, Politecnico di Milano, which explores new applications for WAAM technology. The case study, commissioned by Edilanzutti S.p.A., investigates the feasibility of manufacturing bow windows with WAAM, offering an aesthetic, functional, and cost-effective alternative to conventional methods. The project involves multiple industrial stakeholders, including ABB, Fronius, and ARROWeld as hardware suppliers and Edilanzutti, Baker Hughes, and Fontana as end users developing representative case studies, with BLM providing a comparative analysis against laser-based DED and Politecnico di Milano as the scientific lead. The research leverages an industrial-grade WAAM cell set up at Politecnico di Milano, integrating a robust preprocessing solver to facilitate precise and scalable manufacturing. Experimental validation is conducted through prototyping, starting with simple geometries and scaling to complex bow window junctions. Observations from these trials are synthesized into comprehensive design guidelines for DFWAAM, fostering reproducibility and innovation in future studies. Additionally, this work integrates algorithm refinements to address complex geometries and outlines steps for automating the process. By bridging theoretical advancements with practical experimentation, the thesis provides a framework for leveraging WAAM in large-scale architectural designs. This pioneering approach mitigates challenges associated with conventional prototyping and paves the way for future research in automated additive manufacturing.
Questa tesi esplora la pianificazione ottimizzata del percorso per la prototipazione di bow window leggeri utilizzando il processo Wire-Arc Additive Manufacturing (WAAM). Inizia con una revisione critica della famiglia di processi Directed Energy Deposition (DED), sottolineando il potenziale di WAAM per le applicazioni architettoniche. Con l’obiettivo di superare i limiti delle tecniche di slicing planari, lo studio introduce una metodologia di slicing ibrida che combina strategie planari e non planari per migliorare l’integrità strutturale e la fattibilità estetica dei componenti stampati con WAAM. Questa ricerca si basa sul concetto introdotto nella tesi di laurea magistrale sulla progettazione e prototipazione di un bow window a riflessione luminosa utilizzando WAAM di Li Causi, Lucia [39]. Fa parte del più ampio progetto RocWAAM del Dipartimento di Meccanica del Politecnico di Milano, che esplora nuove applicazioni della tecnologia WAAM. Il caso di studio, commissionato da Edilanzutti S.p.A., indaga la fattibilità della produzione di bow window con WAAM, offrendo un’alternativa estetica, funzionale ed economica ai metodi convenzionali. Il progetto coinvolge diversi soggetti industriali, tra cui ABB, Fronius e ARROWeld come fornitori di hardware e Edilanzutti, Baker Hughes e Fontana come utenti finali, che sviluppano casi di studio rappresentativi, con BLM che fornisce un’analisi comparativa rispetto alla DED basata sul laser e il Politecnico di Milano come responsabile scientifico. La ricerca sfrutta una cella WAAM di livello industriale allestita presso il Politecnico di Milano, che integra un robusto solutore di preelaborazione per facilitare una produzione precisa e scalabile. La validazione sperimentale viene condotta attraverso la prototipazione, partendo da geometrie semplici e scalando fino a giunzioni complesse a bow window. Le osservazioni di queste prove sono sintetizzate in linee guida complete per la progettazione di DFWAAM, favorendo la riproducibilità e l’innovazione negli studi futuri. Inoltre, questo lavoro integra i perfezionamenti dell’algoritmo per affrontare geometrie complesse e delinea i passaggi per automatizzare il processo. Collegando gli avanzamenti teorici con la sperimentazione pratica, la tesi fornisce un quadro per sfruttare WAAM in progetti architettonici su larga scala. Questo approccio pionieristico non solo mitiga le sfide associate alla prototipazione convenzionale, ma apre anche la strada a future ricerche sulla produzione additiva automatizzata.
Combined 3D planar and non-planar path planning: fusing slicing optimisation and experimental process prototyping in the wire arc additive manufacturing of an organic bow window
Naseer, Atif
2024/2025
Abstract
This thesis explores optimized path planning for the prototyping of lightweight bow windows using the Wire-Arc Additive Manufacturing (WAAM) process. It begins with a critical review of the Directed Energy Deposition (DED) family of processes, emphasizing WAAM’s potential for architectural applications. Aimed at overcoming the limitations of planar slicing techniques, the study introduces a hybrid slicing methodology combining planar and non-planar strategies to enhance the structural integrity and aesthetic feasibility of WAAM-printed components. This research builds upon the concept introduced in the Master's thesis on designing and prototyping a light-deflective bow window using WAAM by Li Causi, Lucia [39]. It is part of the broader RocWAAM project at the Department of Mechanics, Politecnico di Milano, which explores new applications for WAAM technology. The case study, commissioned by Edilanzutti S.p.A., investigates the feasibility of manufacturing bow windows with WAAM, offering an aesthetic, functional, and cost-effective alternative to conventional methods. The project involves multiple industrial stakeholders, including ABB, Fronius, and ARROWeld as hardware suppliers and Edilanzutti, Baker Hughes, and Fontana as end users developing representative case studies, with BLM providing a comparative analysis against laser-based DED and Politecnico di Milano as the scientific lead. The research leverages an industrial-grade WAAM cell set up at Politecnico di Milano, integrating a robust preprocessing solver to facilitate precise and scalable manufacturing. Experimental validation is conducted through prototyping, starting with simple geometries and scaling to complex bow window junctions. Observations from these trials are synthesized into comprehensive design guidelines for DFWAAM, fostering reproducibility and innovation in future studies. Additionally, this work integrates algorithm refinements to address complex geometries and outlines steps for automating the process. By bridging theoretical advancements with practical experimentation, the thesis provides a framework for leveraging WAAM in large-scale architectural designs. This pioneering approach mitigates challenges associated with conventional prototyping and paves the way for future research in automated additive manufacturing.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Naseer.pdf
non accessibile
Descrizione: Thesis Text File
Dimensione
44.42 MB
Formato
Adobe PDF
|
44.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235365