The European railway network is a critical infrastructure serving millions of passengers and transporting significant freight volumes. Nowadays, this network is being challenged by novel technologies, such as hydrogen powered systems, which are introduced to replace traditional fuels with more sustainable alternatives, in an effort to mitigate climate change. The new technologies may bring new risks. These need to be thoroughly assessed and managed through a quantitative systematic procedure of risk analysis, to continue to guarantee the high safety standards and regulatory compliance. This study introduces a novel methodological framework in support to risk analysis, which allows estimating the occurrence rates of relevant accidents across the entire European railway net- work. The approach leverages a hierarchical Bayesian generalized linear model (HB-GLM), which estimates the accident rate values throughout the network con- sidering the effects of operational and ambient conditions. The HB-GLM parame- ters are inferred by combining different open datasets, providing valuable insights for the railway stakeholders to support the development of targeted strategies for risk prevention and mitigation. Ultimately, this research enhances the safety of rail transportation by providing a robust analytical framework in support to risk analysis and informed decision-making for the European railway sector.
La rete ferroviaria europea rappresenta un’infrastruttura critica, fondamentale per il trasporto di milioni di passeggeri e per il trasferimento di ingenti volumi di merci. Attualmente, questa rete è soggetta a nuove sfide derivanti dall’introduzione di tecnologie innovative, come i sistemi alimentati a idrogeno, che mirano a sostituire i combustibili tradizionali con alternative più sostenibili, nel quadro degli sforzi per mitigare il cambiamento climatico. Tuttavia, queste nuove tecnologie potrebbero introdurre rischi inediti, che devono essere accuratamente valutati e gestiti attraverso una procedura sistematica e quantitativa di analisi del rischio, al fine di garantire il mantenimento degli elevati standard di sicurezza e la conformità normativa. Il presente studio propone un innovativo quadro metodologico a supporto dell’analisi del rischio, volto a stimare i tassi di occorrenza degli incidenti rilevanti sull’intera rete ferroviaria europea. L’approccio si basa su un modello lineare generalizzato bayesiano gerarchico (HB-GLM), che consente anche di valutare gli effetti delle condizioni operative e ambientali sui valori del tasso di incidente. I parametri del modello vengono stimati attraverso l’integrazione di diversi dataset open-source, offrendo preziose informazioni ai soggetti coinvolti nel settore ferroviario per supportare lo sviluppo di strategie mirate alla prevenzione e alla mitigazione del rischio. In ultima analisi, questa ricerca contribuisce a migliorare la sicurezza del trasporto ferroviario, fornendo un solido quadro analitico per l’analisi del rischio e per processi decisionali informati nel contesto ferroviario europeo.
A hierarchical bayesian approach for accident rate estimation in european railway network
LUSSANA, PAOLO
2023/2024
Abstract
The European railway network is a critical infrastructure serving millions of passengers and transporting significant freight volumes. Nowadays, this network is being challenged by novel technologies, such as hydrogen powered systems, which are introduced to replace traditional fuels with more sustainable alternatives, in an effort to mitigate climate change. The new technologies may bring new risks. These need to be thoroughly assessed and managed through a quantitative systematic procedure of risk analysis, to continue to guarantee the high safety standards and regulatory compliance. This study introduces a novel methodological framework in support to risk analysis, which allows estimating the occurrence rates of relevant accidents across the entire European railway net- work. The approach leverages a hierarchical Bayesian generalized linear model (HB-GLM), which estimates the accident rate values throughout the network con- sidering the effects of operational and ambient conditions. The HB-GLM parame- ters are inferred by combining different open datasets, providing valuable insights for the railway stakeholders to support the development of targeted strategies for risk prevention and mitigation. Ultimately, this research enhances the safety of rail transportation by providing a robust analytical framework in support to risk analysis and informed decision-making for the European railway sector.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Lussana.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
893.57 kB
Formato
Adobe PDF
|
893.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235376