The aim of this thesis, developed during my internship at Automobili Lamborghini S.p.A., is to design an algorithm capable of estimating both the center of gravity (COG) and the moment of inertia (MOI) of a car, based on general characteristics such as its dimensions, powertrain and drivetrain layout. While taking inspiration from some general concepts found in literature, here a completely new approach to the problem is proposed. The algorithm developed in this research is divided into two main components: the center of gravity estimator and the moment of inertia one. The technique adopted for estimating the center of gravity focuses on determining the statistical contribution of various vehicle characteristics to its COG position. Unlike what is typically done in literature, where dimensional data are used, this work considers only categorical information, such as engine and transmission types. The estimation of the moment of inertia, differently from traditional approaches, is performed through the volumetric reconstruction of vehicle’s shape and the subsequent mass redistribution among the points of the generated cloud. This redistribution is formulated as a convex optimization problem, ensuring that the computed COG of the point cloud remains consistent with the previously estimated value, which is used as input. Finally, the moments of inertia are analytically calculated by considering the mass contribution of each point in the cloud. The performances of these estimators have been evaluated both independently and in combination, in order to understand how the error on COG propagates to the estimation of the inertia terms. The text concludes with an analysis of the main strengths and limitations of the proposed solution, offering a perspective on potential future improvements.
L'obiettivo di questa tesi, sviluppata durante il mio tirocinio presso Automobili Lamborghini S.p.A., è quello di progettare un algoritmo in grado di stimare sia il centro di gravità (COG) che il tensore dei momenti d'inerzia (MOI) di un'auto, basandosi su caratteristiche generali come le sue dimensioni, il tipo di propulsione e trasmissione. Pur prendendo spunto da alcuni concetti generali presenti in letteratura, questo lavoro propone un approccio completamente nuovo al problema. L’algoritmo di stima qui sviluppato è suddiviso in due componenti principali: lo stimatore del centro di gravità e quello relativo alle inerzie. L'approccio adottato per la stima del centro di gravità si concentra sulla determinazione del contributo statistico delle diverse caratteristiche del veicolo sulla posizione del COG. A differenza di quanto avviene solitamente in letteratura, in cui si fa affidamento su dati dimensionali del veicolo, in questo lavoro vengono considerate esclusivamente informazioni di tipo categorico, come la tipologia di motore e trasmissione. La stima dei momenti d'inerzia, diversamente dagli approcci tradizionali, viene effettuata attraverso una ricostruzione volumetrica della forma del veicolo e una successiva redistribuzione della massa tra i punti della mesh generata. Questa redistribuzione viene formulata come un problema di ottimizzazione convesso, garantendo che il COG calcolato della nuvola di punti rimanga coerente con il valore precedentemente stimato, che viene utilizzato come input. Infine, le inerzie vengono calcolate analiticamente considerando il contributo di massa di ogni punto della nuvola ricostruita. Le prestazioni di questi stimatori sono state valutate sia singolarmente che in combinazione, per comprendere la propagazione dell’errore sul COG alla stima delle inerzie. Il testo, infine, si conclude con l'analisi dei principali punti di forza e limitazioni della soluzione proposta, offrendo una prospettiva su possibili miglioramenti futuri.
Estimation of center of gravity and inertia tensor of cars starting from their technical data and images
ZAGATI, ALEX
2024/2025
Abstract
The aim of this thesis, developed during my internship at Automobili Lamborghini S.p.A., is to design an algorithm capable of estimating both the center of gravity (COG) and the moment of inertia (MOI) of a car, based on general characteristics such as its dimensions, powertrain and drivetrain layout. While taking inspiration from some general concepts found in literature, here a completely new approach to the problem is proposed. The algorithm developed in this research is divided into two main components: the center of gravity estimator and the moment of inertia one. The technique adopted for estimating the center of gravity focuses on determining the statistical contribution of various vehicle characteristics to its COG position. Unlike what is typically done in literature, where dimensional data are used, this work considers only categorical information, such as engine and transmission types. The estimation of the moment of inertia, differently from traditional approaches, is performed through the volumetric reconstruction of vehicle’s shape and the subsequent mass redistribution among the points of the generated cloud. This redistribution is formulated as a convex optimization problem, ensuring that the computed COG of the point cloud remains consistent with the previously estimated value, which is used as input. Finally, the moments of inertia are analytically calculated by considering the mass contribution of each point in the cloud. The performances of these estimators have been evaluated both independently and in combination, in order to understand how the error on COG propagates to the estimation of the inertia terms. The text concludes with an analysis of the main strengths and limitations of the proposed solution, offering a perspective on potential future improvements.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Zagati_Thesis.pdf
non accessibile
Descrizione: Thesis
Dimensione
21.22 MB
Formato
Adobe PDF
|
21.22 MB | Adobe PDF | Visualizza/Apri |
2025_04_Zagati_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
2.4 MB
Formato
Adobe PDF
|
2.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235428