In recent decades, the space industry has seen an increasing trend of launches of shoebox-sized spacecraft (e.g., CubeSats) due to their reduced manufacturing cost and effective functionalities. Although most CubeSats operate in low Earth orbit, recent research has explored their potential for interplanetary missions. The surge of deep-space probes makes it unsustainable to navigate them with standard radiometric tracking, restricting deep-space access primarily to government agencies. Hence, the need for autonomy onboard represents a solution that allows the spacecraft to operate independently from any ground intervention. This thesis expands on previous work from the EXTREMA (Engineering Extremely Rare Events in Astrodynamics for Deep-Space Missions in Autonomy) project by investigating how the introduction of a second camera onboard influences the accuracy of the spacecraft's state estimation during an Earth-Mars transfer leg. Using an Extended Kalman Filter with synchronous planetary measurements when possible, the dual-camera configuration improved position and velocity estimation by 29.13% and 27.8%, respectively, compared to a single-camera system. The final 3σ was estimated at 4836.82 km and 0.725 m/s starting from initial values of 51961.52 km and 519.62 m/s. The effectiveness of this approach was validated through hardware-in-the-loop simulations using the RETINA facility.
Negli ultimi decenni, l'industria spaziale ha assistito a un importante incremento dei lanci di veicoli spaziali di ridotte dimensioni (e.g. CubeSats) grazie al loro ridotto costo di produzione in rapporto alle effettive funzionalità. Nonostante la maggior parte dei CubeSats operi in bassa orbita terrestre, ricerche recenti ne hanno esplorato il potenziale per missioni interplanetarie. L'aumento del numero di sonde destinate allo spazio profondo rende insostenibile la navigazione di questi CubeSats mediante tracciamento radiometrico convenzionale, limitando di fatto l'accesso allo spazio profondo principalmente alle agenzie governative. Di conseguenza, la necessità di disporre di autonomia a bordo rappresenta una soluzione che consente al veicolo di operare indipendentemente da qualsiasi intervento da terra. La presente tesi amplia i lavori precedenti del progetto EXTREMA (Engineering Extremely Rare Events in Astrodynamics for Deep-Space Missions in Autonomy), investigando come l'introduzione di una seconda videocamera di bordo influisca sull'accuratezza della stima dello stato del veicolo durante un arco di trasferimento Terra-Marte. Utilizzando un Filtro di Kalman Esteso e, quando possibile, misure planetarie sincrone, la configurazione a doppia videocamera migliora la stima di posizione e velocità rispettivamente del 29.13% e del 27.8% rispetto a un sistema a singola videocamera. La confidenza finale a 3σ è stata stimata a 4836.82 km e 0.725 m/s, a fronte di valori iniziali di 51961.52 km e 519.62 m/s. L'efficacia di tale approccio è stata validata attraverso simulazioni hardware-in-the-loop, utilizzando l'impianto RETINA.
Autonomous dual camera navigation for CubeSats in deep space: design and hardware-in-the-loop verification
Towfick, Karim
2023/2024
Abstract
In recent decades, the space industry has seen an increasing trend of launches of shoebox-sized spacecraft (e.g., CubeSats) due to their reduced manufacturing cost and effective functionalities. Although most CubeSats operate in low Earth orbit, recent research has explored their potential for interplanetary missions. The surge of deep-space probes makes it unsustainable to navigate them with standard radiometric tracking, restricting deep-space access primarily to government agencies. Hence, the need for autonomy onboard represents a solution that allows the spacecraft to operate independently from any ground intervention. This thesis expands on previous work from the EXTREMA (Engineering Extremely Rare Events in Astrodynamics for Deep-Space Missions in Autonomy) project by investigating how the introduction of a second camera onboard influences the accuracy of the spacecraft's state estimation during an Earth-Mars transfer leg. Using an Extended Kalman Filter with synchronous planetary measurements when possible, the dual-camera configuration improved position and velocity estimation by 29.13% and 27.8%, respectively, compared to a single-camera system. The final 3σ was estimated at 4836.82 km and 0.725 m/s starting from initial values of 51961.52 km and 519.62 m/s. The effectiveness of this approach was validated through hardware-in-the-loop simulations using the RETINA facility.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Towfick_Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Towfick_Thesis
Dimensione
12.41 MB
Formato
Adobe PDF
|
12.41 MB | Adobe PDF | Visualizza/Apri |
2025_04_Towfick_Executive_Summary.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Towfick_Executive_Summary
Dimensione
6.29 MB
Formato
Adobe PDF
|
6.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235429