Despite the widespread agricultural dependence on nitrogen fertilizers and their role in degrading water quality, current global analyses of their hydrological footprint remain fragmented and lack high-resolution spatial insights. This study quantifies the grey water footprint (GWF) of nitrogen pollution across 21 major crops using high-resolution geospatial datasets (NPKGRIDS, HWSD, MIRCA-OS) integrated with the Tier 1 GWF Accounting framework at a 5-arcminute resolution (~10 km). Four agricultural management scenarios—ranging from optimal precision practices to degraded overfertilization—were analyzed to evaluate impacts on water scarcity. Results reveal stark regional disparities: rice cultivation in Southeast Asia exhibits the highest GWF (4,019 m³/ha), driven by flood irrigation and monsoon-driven leaching, while cassava in Sub-Saharan Africa shows minimal impact (107 m³/ha) due to rainfed, low-input practices. Scenario analysis demonstrates that adopting precision nitrogen management and drip irrigation could reduce GWF by 22–35% in high-impact regions such as the U.S. Midwest and India’s Punjab. The study identifies 15% of global grid cells as critical hotspots, contributing 60% of agricultural GWF. Hydroclimatic pressures and fertilizer overuse emerge as dominant drivers of GWF-induced scarcity, particularly in high-input agricultural systems where conventional water stress metrics underestimate risks by ignoring pollution dilution demands. By standardizing GWF estimation across scales, this research provides a replicable framework to align agricultural practices with SDG 6 (Clean Water) and SDG 2 (Zero Hunger), advocating for spatially targeted policies such as nitrogen quotas and agroecological transitions. These insights emphasize the urgency of integrating water quality and scarcity metrics into agricultural governance to balance food security with sustainable water resource management.
Nonostante la diffusa dipendenza dell’agricoltura dai fertilizzanti azotati e il loro ruolo nel deterioramento della qualità dell’acqua, le analisi globali sull’impronta idrica di tali pratiche restano frammentate e prive di dettagli spaziali ad alta risoluzione. Questo studio quantifica l’impronta idrica grigia (GWF) derivante dall’inquinamento da azoto per 21 colture principali, utilizzando dataset geospaziali ad alta risoluzione (NPKGRIDS, HWSD, MIRCA-OS) integrati con il framework Tier 1 per il calcolo della GWF a una risoluzione di 5 minuti d’arco (~10 km). Sono stati analizzati quattro scenari di gestione agricola—dalle pratiche di precisione ottimali alla sovrafertilizzazione degradante—per valutare gli impatti sulla scarsità idrica. I risultati evidenziano marcate disparità regionali: la coltivazione del riso nel Sud-Est asiatico presenta la GWF più elevata (4.019 m³/ha), determinata dall’irrigazione a sommersione e dalla lisciviazione monsonica, mentre la coltivazione della cassava nell’Africa subsahariana mostra un impatto minimo (107 m³/ha) grazie a pratiche non irrigate e a basso input. L’analisi degli scenari dimostra che l’adozione di una gestione di precisione dell’azoto e dell’irrigazione a goccia potrebbe ridurre la GWF del 22–35% nelle regioni ad alto impatto, come il Midwest statunitense e il Punjab indiano. Lo studio identifica il 15% delle celle globali come punti critici, responsabili del 60% della GWF agricola. Le pressioni idroclimatiche e il sovrautilizzo di fertilizzanti emergono come i principali fattori scatenanti della scarsità idrica indotta dalla GWF, specialmente nei sistemi agricoli ad alto input, dove le metriche convenzionali dello stress idrico tendono a sottovalutare i rischi, ignorando la necessità di diluizione degli inquinanti. Standardizzando la stima della GWF su diverse scale, questa ricerca fornisce un framework replicabile per allineare le pratiche agricole con gli Obiettivi di Sviluppo Sostenibile (SDG) 6 (Acqua pulita) e SDG 2 (Fame zero), sostenendo politiche territorialmente mirate, come l’introduzione di quote di azoto e transizioni agroecologiche. Questi risultati sottolineano l’urgenza di integrare metriche di qualità e scarsità idrica nella governance agricola, al fine di bilanciare sicurezza alimentare e gestione sostenibile delle risorse idriche.
Global mapping of grey water footprint in agriculture: from water quality to water scarcity
Torezhan, Aisulu
2024/2025
Abstract
Despite the widespread agricultural dependence on nitrogen fertilizers and their role in degrading water quality, current global analyses of their hydrological footprint remain fragmented and lack high-resolution spatial insights. This study quantifies the grey water footprint (GWF) of nitrogen pollution across 21 major crops using high-resolution geospatial datasets (NPKGRIDS, HWSD, MIRCA-OS) integrated with the Tier 1 GWF Accounting framework at a 5-arcminute resolution (~10 km). Four agricultural management scenarios—ranging from optimal precision practices to degraded overfertilization—were analyzed to evaluate impacts on water scarcity. Results reveal stark regional disparities: rice cultivation in Southeast Asia exhibits the highest GWF (4,019 m³/ha), driven by flood irrigation and monsoon-driven leaching, while cassava in Sub-Saharan Africa shows minimal impact (107 m³/ha) due to rainfed, low-input practices. Scenario analysis demonstrates that adopting precision nitrogen management and drip irrigation could reduce GWF by 22–35% in high-impact regions such as the U.S. Midwest and India’s Punjab. The study identifies 15% of global grid cells as critical hotspots, contributing 60% of agricultural GWF. Hydroclimatic pressures and fertilizer overuse emerge as dominant drivers of GWF-induced scarcity, particularly in high-input agricultural systems where conventional water stress metrics underestimate risks by ignoring pollution dilution demands. By standardizing GWF estimation across scales, this research provides a replicable framework to align agricultural practices with SDG 6 (Clean Water) and SDG 2 (Zero Hunger), advocating for spatially targeted policies such as nitrogen quotas and agroecological transitions. These insights emphasize the urgency of integrating water quality and scarcity metrics into agricultural governance to balance food security with sustainable water resource management.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Torezhan.pdf
solo utenti autorizzati a partire dal 11/03/2026
Descrizione: Text of the thesis
Dimensione
4.09 MB
Formato
Adobe PDF
|
4.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235435