This thesis, developed in collaboration with Politecnico di Milano and INAF’s Astronom ical Observatory of Brera, focuses on the application of topology optimization (TO) to astronomical instrument optomechanics for additive manufacturing (AM). The case study involves the whiffletree axial support structures of the 1-meter elliptical Calibration Unit Folding Mirror of the MORFEO instrument, designed for the Extremely Large Telescope of the European Southern Observatory. The use of AM in the astronomical field promises significant benefits, including mass reduction, part consolidation, and enhanced optical performance. Consequently, the present work, which has no prior exploration in the liter ature, is of strong interest to INAF and the scientific community. Finite Element Analysis (FEA) was employed using Abaqus to verify the compliance of the original structure de sign with the mirror’s technical specifications and to establish a benchmark for comparing optimized designs. These optimized designs were obtained using Abaqus’ Tosca module for TO, interpreted with Altair Inspire, and analyzed for printability using Autodesk Net fabb. Python was used to extract the deformed mirror surface geometry from the FEA outputs, while MATLAB was utilized to analyze the data using the Zernike polynomial expansion to estimate wavefront aberrations caused by mirror deformations under loading. The best TO output, obtained using Dassault Systèmes’ proprietary Mass Interpolation Material Penalization (MIMP) method, was integrated with parts of the original assem bly. This hybrid structure effectively minimizes mirror deformations while achieving part consolidation, mass reduction, and ease of manufacturability. This thesis presents the encountered challenges, including long computational times and the complexities arising from the use of different software applications. It provides a summary of findings and recommendations for future work, while stressing that the positive outcome of this study highlights the growing importance of AM technology in advancing astronomical research and developing more efficient support structures for astronomical instrumentation.
Questa tesi, sviluppata in collaborazione con il Politecnico di Milano e l’Osservatorio As tronomico di Brera di INAF, si concentra sull’applicazione dell’ottimizzazione topologica (TO) volta alla produzione additiva (AM) di optomeccaniche di strumenti astronomici. Il caso studio riguarda le strutture di supporto assiali del Calibration Unit Folding Mirror (CUFM), uno specchio dello strumento MORFEO per l’Extremely Large Telescope del European Southern Observatory. L’uso della AM in astronomia promette benefici come riduzioni di massa, consolidazione dei componenti e il miglioramento delle prestazioni ot tiche, rendendo questo lavoro, che non ha precedenti in letteratura, di grande interesse per l’INAF e la comunità scientifica. L’analisi agli elementi finiti (FEA) è stata impiegata utilizzando Abaqus per verificare la conformità della struttura originale con le specifiche tecniche del CUFM e per stabilire un riferimento per il confronto con i design ottimizzati. Questi sono stati ottenuti utilizzando il modulo Tosca di Abaqus per la TO, interpretati con Altair Inspire e analizzati per la stampabilità usando Autodesk Netfabb. Python è stato utilizzato per estrarre la geometria della superficie deformata del CUFM da Abaqus e MATLABèstato impiegato per analizzare i dati utilizzando l’espansione polinomiale di Zernike per stimare le aberrazioni del fronte d’onda causate dalle deformazioni del CUFM sotto carico. Il miglior risultato della TO, ottenuto utilizzando il metodo proprietario di Mass Interpolation Material Penalization (MIMP) di Dassault Systèmes, è stato inte grato con parti dell’assieme originale. Questa struttura ibrida minimizza le deformazioni, ottenendo allo stesso tempo la consolidazione dei componenti, la riduzione della massa e una buona stampabilità. Il lavoro discute le difficoltà affrontate, inclusi i lunghi tempi di calcolo e l’uso di diverse applicazioni software. Conclude con un riepilogo dei risultati e futuri sviluppi, sottolineando l’importanza crescente della tecnologia AM nel promuo vere la ricerca astronomica e nello sviluppo di strutture di supporto più efficienti per la strumentazione astronomica.
Optimizing topology in astronomical optomechanics for additive manufacturing
De Luca, Giuseppe
2023/2024
Abstract
This thesis, developed in collaboration with Politecnico di Milano and INAF’s Astronom ical Observatory of Brera, focuses on the application of topology optimization (TO) to astronomical instrument optomechanics for additive manufacturing (AM). The case study involves the whiffletree axial support structures of the 1-meter elliptical Calibration Unit Folding Mirror of the MORFEO instrument, designed for the Extremely Large Telescope of the European Southern Observatory. The use of AM in the astronomical field promises significant benefits, including mass reduction, part consolidation, and enhanced optical performance. Consequently, the present work, which has no prior exploration in the liter ature, is of strong interest to INAF and the scientific community. Finite Element Analysis (FEA) was employed using Abaqus to verify the compliance of the original structure de sign with the mirror’s technical specifications and to establish a benchmark for comparing optimized designs. These optimized designs were obtained using Abaqus’ Tosca module for TO, interpreted with Altair Inspire, and analyzed for printability using Autodesk Net fabb. Python was used to extract the deformed mirror surface geometry from the FEA outputs, while MATLAB was utilized to analyze the data using the Zernike polynomial expansion to estimate wavefront aberrations caused by mirror deformations under loading. The best TO output, obtained using Dassault Systèmes’ proprietary Mass Interpolation Material Penalization (MIMP) method, was integrated with parts of the original assem bly. This hybrid structure effectively minimizes mirror deformations while achieving part consolidation, mass reduction, and ease of manufacturability. This thesis presents the encountered challenges, including long computational times and the complexities arising from the use of different software applications. It provides a summary of findings and recommendations for future work, while stressing that the positive outcome of this study highlights the growing importance of AM technology in advancing astronomical research and developing more efficient support structures for astronomical instrumentation.File | Dimensione | Formato | |
---|---|---|---|
2025_04_DeLuca_Tesi.pdf
accessibile in internet per tutti a partire dal 13/03/2028
Descrizione: Testo della Tesi
Dimensione
43.54 MB
Formato
Adobe PDF
|
43.54 MB | Adobe PDF | Visualizza/Apri |
2025_04_DeLuca_ExecutiveSummary.pdf
accessibile in internet per tutti a partire dal 13/03/2028
Descrizione: Executive Summary
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235437