This thesis aims to investigate the electronic band structure of Tantalum ditelluride (TaTe2), a compound that belongs to the family of layered transition metal dichalcogenides. TaTe2 exhibits a charge density wave (CDW) transition at around 170 K, accompanied by a structural reconstruction from the 3x1 to the 3x3 crystal structure. The origin of this phase transition has been extensively discussed, but still remains elusive. Moreover, anomalies in the low-temperature transport properties suggest that a conventional description of the CDW transition based on the Peierls model does not apply to this material. Only few ultrafast experiments have investigated the out-of-equilibrium material’s response, specifically electron diffraction studies, which have reported the presence of metastable phases. TaTe2, therefore, represents an ideal system for studying the interplay between lattice and electronic degrees of freedom in CDW formation, along with the possibility to optically induce a transition to exotic new phases of matter. In this work, these aspects are addressed using ultrafast time and angle resolved photoemission spectroscopy (tr-ARPES), an experimental technique that allows for precise temporal tracking of the various processes at play. The experimental results reveal clear differences between the room and low temperature phases, which display different electronic distributions, particularly around Γ and at k||≈ −0.2 Å . The analysis of the temporal dynamics reveals a rigid shift in the energy position of the bands toward the Fermi level. The most interesting feature is found around Γ in the low-temperature phase, where a spectral weight redistribution among two electronic bands is observed at 1.6 ps after optical excitation, persisting up to 100 ps. The dynamic response of the system is modulated by oscillations which are attributed to the excitation of coherent phonons revealed by Fourier transform analysis. The excitation of coherent phonons as well as the presence of a metastable phase are indicative of a strong electron-phonon coupling in the material. This work has paved the way for further exploration of the ultrafast dynamics in TaTe2, opening new avenues for the investigation of material’s non-equilibrium behavior and the role of electron-phonon coupling.
Scopo di questo lavoro di tesi è studiare la struttura elettronica del TaTe2 appartenente alla famiglia dei metalli di transizione dicalcogenuri. Il TaTe2 presenta un’onda di densità di carica (CDW) a circa 170 K, accompagnata da una ricostruzione dalla struttura cristallina da una fase 3x1 a una 3x3. L’origine di tale transizione è stata ampiamente discussa, tuttavia è ancora poco chiara. Le anomalie nelle proprietà di trasporto a bassa temperatura suggeriscono che una descrizione convenzionale della transizione CDW basata sul modello di Peierls non può essere impiegata per questo materiale. Finora, solo pochi studi hanno esaminato la risposta dinamica del TaTe2 a seguito dell’eccitazione ottica, rivelando la presenza di fasi metastabili. Il TaTe2 è, quindi, un sistema ideale per studiare l’interazione tra i gradi di libertà reticolari ed elettronici nella formazione della CDW così come la possibilità di indurre otticamente una transizione verso una nuova fase della materia. In questo lavoro, questi aspetti vengono esaminati utilizzando la spettroscopia di fotoemissione risolta in tempo e in angolo (tr-ARPES), una tecnica sperimentale che permette di distinguere i vari contributi alla risposta dinamica, collocandoli su scale temporali specifiche. I risultati sperimentali confermano la differenza tra le fasi 3x3 e 3x1, che presentano diverse distribuzioni elettroniche, in particolare attorno al punto Γ e a k||≈ −0.2Å . L’analisi delle dinamiche temporali evidenzia uno spostamento rigido verso il livello di Fermi della posizione in energia delle bande. La caratteristica più interessante emerge attorno a Γ nella fase a bassa temperatura, dove, dopo circa 1.6 ps dall’eccitazione ottica si osserva una redistribuzione del peso spettrale tra due bande elettroniche che persiste fino a 100 ps. La risposta dinamica del sistema è inoltre caratterizzata da oscillazioni, attribuite all’eccitazione di fononi coerenti. L’analisi della trasformata di Fourier ha rivelato i modi fononici presenti a alta e bassa temperatura. Questo lavoro ha contribuito a caratterizzare la transizione di fase e il comportamento fuori equilibrio del TaTe2, ponendo le basi per ulteriori esplorazioni delle dinamiche ultraveloci evidenziando il ruolo dell’accoppiamento elettrone-fonone.
Light-induced phase transition and femtoseconds electronic dynamics in TaTe2
LAERA, MARIA GRAZIA
2023/2024
Abstract
This thesis aims to investigate the electronic band structure of Tantalum ditelluride (TaTe2), a compound that belongs to the family of layered transition metal dichalcogenides. TaTe2 exhibits a charge density wave (CDW) transition at around 170 K, accompanied by a structural reconstruction from the 3x1 to the 3x3 crystal structure. The origin of this phase transition has been extensively discussed, but still remains elusive. Moreover, anomalies in the low-temperature transport properties suggest that a conventional description of the CDW transition based on the Peierls model does not apply to this material. Only few ultrafast experiments have investigated the out-of-equilibrium material’s response, specifically electron diffraction studies, which have reported the presence of metastable phases. TaTe2, therefore, represents an ideal system for studying the interplay between lattice and electronic degrees of freedom in CDW formation, along with the possibility to optically induce a transition to exotic new phases of matter. In this work, these aspects are addressed using ultrafast time and angle resolved photoemission spectroscopy (tr-ARPES), an experimental technique that allows for precise temporal tracking of the various processes at play. The experimental results reveal clear differences between the room and low temperature phases, which display different electronic distributions, particularly around Γ and at k||≈ −0.2 Å . The analysis of the temporal dynamics reveals a rigid shift in the energy position of the bands toward the Fermi level. The most interesting feature is found around Γ in the low-temperature phase, where a spectral weight redistribution among two electronic bands is observed at 1.6 ps after optical excitation, persisting up to 100 ps. The dynamic response of the system is modulated by oscillations which are attributed to the excitation of coherent phonons revealed by Fourier transform analysis. The excitation of coherent phonons as well as the presence of a metastable phase are indicative of a strong electron-phonon coupling in the material. This work has paved the way for further exploration of the ultrafast dynamics in TaTe2, opening new avenues for the investigation of material’s non-equilibrium behavior and the role of electron-phonon coupling.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Laera_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: Testo tesi
Dimensione
16.81 MB
Formato
Adobe PDF
|
16.81 MB | Adobe PDF | Visualizza/Apri |
2025_04_Laera_ExecutiveSummary_02.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
2.13 MB
Formato
Adobe PDF
|
2.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235536