This study focuses on the aeroelastic tailoring of the mainplane of a rear wing in F1, analyzing how the laminate thickness and the arrangement of composite plies influence the wing’s aeroelastic response. However, the objective of this analysis is not to provide a definitive sizing, but rather to present a reliable methodology capable of reducing the computational time required for the analysis and optimization of aerodynamic performances. The work involves generating an initial dataset through a cycle of coupled CFD-FEM simulations. In the aerodynamic phase, two-dimensional CFD analyses provide the aerodynamic load corresponding to the midspan section of the mainplane, which is then interpolated along the span while respecting the structural boundary conditions. Subsequently, the interpolated load is applied to the undeformed structural surface for FEM analysis, and the resulting deformations are iteratively applied to the aerodynamic mesh to update the airfoil geometry until convergence is achieved. This Fluid-Structure Interaction (FSI) analysis is further extended to various structural configurations, examining the impact of both the laminate thickness and the orientation of plies, arranged at two different angles, on the aerodynamic coefficients, all through a purposefully developed code that automates the entire process. The data obtained are used to construct a surrogate model via Radial Basis Function (RBF) interpolation. The response surfaces, extrapolated and iteratively refined, allow an assessment of the system’s sensitivity to variations in the design variables and guide the design optimization process. The optimal design is finally evaluated using a 3D CFD analysis on the entire structure to compare its behavior with that predicted by the proposed two-dimensional methodology. The results highlight the effectiveness of the proposed method, which enables a thorough exploration of the impact of structural design variables on the wing’s aeroelastic performance, ensuring accurate predictions while significantly reducing computational times.
Questo studio si concentra sull'aeroelastic tailoring del mainplane di un'ala posteriore di F1, analizzando come lo spessore del laminato e la disposizione delle lamine nei materiali compositi influenzino la risposta aeroelastica dell'ala. L'obiettivo non è fornire un dimensionamento definitivo, ma presentare una metodologia affidabile in grado di ridurre i tempi computazionali necessari per l'analisi e l'ottimizzazione delle prestazioni aerodinamiche. Il lavoro prevede la generazione di un dataset iniziale mediante un ciclo di simulazioni accoppiate CFD-FEM. Nella fase aerodinamica, analisi CFD bidimensionali forniscono il carico aerodinamico relativo alla sezione di mezzeria del mainplane, che viene interpolato lungo l'apertura, rispettando le condizioni al contorno strutturali. Successivamente, il carico interpolato viene applicato alla superficie indeformata per l'analisi FEM, e le deformazioni risultanti vengono iterativamente applicate alla mesh aerodinamica per aggiornare la geometria del profilo fino a convergenza. Questa analisi FSI viene estesa a diverse configurazioni strutturali, esaminando l'impatto dello spessore del laminato e dell'orientamento delle lamine, disposte a due angolazioni differenti, sui coefficienti aerodinamici, il tutto tramite un codice appositamente sviluppato per automatizzare l'intero processo. I dati raccolti vengono utilizzati per costruire un modello surrogato mediante interpolazione con funzioni radiali (RBF). Le superfici di risposta, estrapolate ed iterativamente raffinate, consentono di valutare la sensitività del sistema alle variazioni delle variabili di progetto e di guidare il processo di ottimizzazione del design. Il design ottimale viene infine valutato mediante un'analisi CFD 3D sull'intera struttura, per confrontare il comportamento reale con quello previsto dalla metodologia bidimensionale proposta. I risultati evidenziano l'efficacia del metodo proposto, che permette un'esplorazione approfondita dell'impatto delle variabili strutturali sulle prestazioni aeroelastiche dell'ala, garantendo previsioni accurate e riducendo significativamente i tempi computazionali.
Design optimization of a flexible F1 rear wing mainplane based on high-fidelity fluid-structure simulations
Masi, Raúl
2023/2024
Abstract
This study focuses on the aeroelastic tailoring of the mainplane of a rear wing in F1, analyzing how the laminate thickness and the arrangement of composite plies influence the wing’s aeroelastic response. However, the objective of this analysis is not to provide a definitive sizing, but rather to present a reliable methodology capable of reducing the computational time required for the analysis and optimization of aerodynamic performances. The work involves generating an initial dataset through a cycle of coupled CFD-FEM simulations. In the aerodynamic phase, two-dimensional CFD analyses provide the aerodynamic load corresponding to the midspan section of the mainplane, which is then interpolated along the span while respecting the structural boundary conditions. Subsequently, the interpolated load is applied to the undeformed structural surface for FEM analysis, and the resulting deformations are iteratively applied to the aerodynamic mesh to update the airfoil geometry until convergence is achieved. This Fluid-Structure Interaction (FSI) analysis is further extended to various structural configurations, examining the impact of both the laminate thickness and the orientation of plies, arranged at two different angles, on the aerodynamic coefficients, all through a purposefully developed code that automates the entire process. The data obtained are used to construct a surrogate model via Radial Basis Function (RBF) interpolation. The response surfaces, extrapolated and iteratively refined, allow an assessment of the system’s sensitivity to variations in the design variables and guide the design optimization process. The optimal design is finally evaluated using a 3D CFD analysis on the entire structure to compare its behavior with that predicted by the proposed two-dimensional methodology. The results highlight the effectiveness of the proposed method, which enables a thorough exploration of the impact of structural design variables on the wing’s aeroelastic performance, ensuring accurate predictions while significantly reducing computational times.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Masi_Executive_Summary.pdf
non accessibile
Descrizione: executive summary
Dimensione
15.9 MB
Formato
Adobe PDF
|
15.9 MB | Adobe PDF | Visualizza/Apri |
2025_04_Masi_Tesi.pdf
accessibile in internet per tutti
Descrizione: testo tesi
Dimensione
15.27 MB
Formato
Adobe PDF
|
15.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235553