This study investigates the neural connectivity patterns underlying Imagined Speech using electroencephalography (EEG), employing a novel approach that combines brain area characterization and frequency band characterization. Brain area characterization was first conducted through undirected connectivity analysis to examine interregional interactions and was then refined using a new area selection criterion. This criterion was subsequently applied to directed connectivity analysis to determine whether these interactions reflect synchronization or causal influence. Frequency band characterization was performed using Complex Network Analysis (CNA) to assess the structural behavior of spectral activity across different oscillatory ranges. The combination of three different connectivity methods, applied to a novel experimental protocol, along with the introduction of a new selection criterion based on multiple connectivity metrics, provides a comprehensive and innovative framework for analyzing connectivity during Imagined Speech. Undirected connectivity analysis, representing functional connectivity, identified key cortical networks, with the left frontal-central-temporal pathway reinforcing classical speech production models and the right temporal to left central connection supporting cross-hemispheric auditory-motor integration. The interaction between the left parietal-occipital lobe and the motor cortexes reinforces the modulation of perceptual simulation in the absence of external inputs. To refine these findings, a selection criterion was applied to extract the most consistent functional interactions, which were then used as a mask for directed connectivity analysis. Directed connectivity, representing effective connectivity, revealed that the left central lobe acts as a primary driver of both frontal and temporal speech-related regions, emphasizing the role of motor planning in imagined articulation. The right temporal lobe was confirmed as a key modulator of auditory-motor integration, while the left parietal-occipital lobe exerted a top-down influence on motor regions, integrating sensory and spatial components into speech processing. CNA results highlighted frequency-dependent differences in network efficiency. The gamma band exhibited the strongest and most functionally integrated network, supporting high-order cognitive processing and interregional communication. Beta activity was associated with motor preparation, while alpha activity reflected inhibitory mechanisms preventing overt articulation. Delta and theta bands demonstrated weaker, more fragmented connectivity, suggesting their involvement in rhythm and memory-related aspects of speech imagery. These findings provide new insights into the hierarchical organization of Imagined Speech, demonstrating that neural speech representation integrates sensory, motor, and executive processes. By distinguishing synchronization from causal influences and analyzing connectivity at both spatial and spectral levels, this study contributes to advancements in brain-computer interface (BCI) applications, supporting the development of more accurate decoding strategies for Imagined Speech-based communication.
Questo studio analizza i pattern di connettività neurale sottostanti l’Imagined Speech attraverso l’elettroencefalografia (EEG), adottando un approccio innovativo che combina la caratterizzazione delle aree cerebrali con la caratterizzazione delle bande di frequenza. La caratterizzazione delle aree cerebrali è stata inizialmente condotta tramite un’analisi della connettività non direzionale per esaminare le interazioni interregionali e successivamente affinata mediante un nuovo criterio di selezione delle aree. Questo criterio è stato poi applicato all’analisi della connettività direzionale per distinguere tra sincronizzazione e influenza causale. La caratterizzazione delle bande di frequenza è stata realizzata tramite Complex Network Analysis (CNA) per valutare l’organizzazione strutturale dell’attività spettrale nelle diverse gamme oscillatori. L’integrazione di tre diversi metodi di analisi della connettività, applicata a un protocollo sperimentale nuovo e supportata dall’introduzione di un nuovo criterio di selezione basato su più metriche di connettività, fornisce un quadro completo e avanzato per lo studio della connettività nell’Imagined Speech. L’analisi della connettività non direzionale, che rappresenta la connettività funzionale, ha identificato reti corticali chiave, con il percorso frontale-centrale-temporale sinistro che rafforza i modelli classici di produzione del linguaggio e la connessione tra il lobo temporale destro e il lobo centrale sinistro che supporta l’integrazione uditivo-motoria interemisferica. L’interazione tra il lobo parietale-occipitale sinistro e le cortecce motorie evidenzia un meccanismo di modulazione della simulazione percettiva in assenza di input esterni. Per affinare questi risultati, è stato applicato un criterio di selezione per estrarre le interazioni funzionali più ricorrenti, successivamente utilizzate come maschera per l’analisi della connettività direzionale. L’analisi della connettività direzionale, che rappresenta la connettività efficace, ha rivelato che il lobo centrale sinistro agisce come driver principale per le regioni frontali e temporali coinvolte nel linguaggio, sottolineando il ruolo della pianificazione motoria nell’articolazione immaginata. Il lobo temporale destro è stato confermato come un modulatore chiave dell’integrazione uditivo-motoria, mentre il lobo parietale-occipitale sinistro esercita un’influenza top-down sulle regioni motorie, integrando componenti sensoriali e spaziali nei processi linguistici. I risultati della Complex Network Analysis hanno evidenziato differenze nell’efficienza della rete in funzione della banda di frequenza. La banda gamma ha mostrato la rete più forte e integrata funzionalmente, sostenendo processi cognitivi di alto livello e la comunicazione interregionale. L’attività beta è risultata associata alla preparazione motoria, mentre l’attività alfa ha evidenziato meccanismi inibitori che prevengono l’articolazione esplicita. Le bande delta e theta hanno mostrato connettività più debole e frammentata, suggerendo un coinvolgimento nei processi ritmici e mnemonici legati all’immaginazione del linguaggio. Questi risultati offrono nuove prospettive sulla struttura gerarchica dell’Imagined Speech, dimostrando come la sua rappresentazione neurale integri processi sensoriali, motori ed esecutivi. Distinguendo tra sincronizzazione e influenze causali e analizzando la connettività sia a livello spaziale che spettrale, questo studio contribuisce all’evoluzione delle applicazioni nelle Brain-Computer Interfaces (BCI), supportando lo sviluppo di strategie di decodifica più accurate per la comunicazione basata sull’Imagined Speech.
Novel EEG-based signatures of brain connectivity for imagined speech
MORONI, MATILDE
2023/2024
Abstract
This study investigates the neural connectivity patterns underlying Imagined Speech using electroencephalography (EEG), employing a novel approach that combines brain area characterization and frequency band characterization. Brain area characterization was first conducted through undirected connectivity analysis to examine interregional interactions and was then refined using a new area selection criterion. This criterion was subsequently applied to directed connectivity analysis to determine whether these interactions reflect synchronization or causal influence. Frequency band characterization was performed using Complex Network Analysis (CNA) to assess the structural behavior of spectral activity across different oscillatory ranges. The combination of three different connectivity methods, applied to a novel experimental protocol, along with the introduction of a new selection criterion based on multiple connectivity metrics, provides a comprehensive and innovative framework for analyzing connectivity during Imagined Speech. Undirected connectivity analysis, representing functional connectivity, identified key cortical networks, with the left frontal-central-temporal pathway reinforcing classical speech production models and the right temporal to left central connection supporting cross-hemispheric auditory-motor integration. The interaction between the left parietal-occipital lobe and the motor cortexes reinforces the modulation of perceptual simulation in the absence of external inputs. To refine these findings, a selection criterion was applied to extract the most consistent functional interactions, which were then used as a mask for directed connectivity analysis. Directed connectivity, representing effective connectivity, revealed that the left central lobe acts as a primary driver of both frontal and temporal speech-related regions, emphasizing the role of motor planning in imagined articulation. The right temporal lobe was confirmed as a key modulator of auditory-motor integration, while the left parietal-occipital lobe exerted a top-down influence on motor regions, integrating sensory and spatial components into speech processing. CNA results highlighted frequency-dependent differences in network efficiency. The gamma band exhibited the strongest and most functionally integrated network, supporting high-order cognitive processing and interregional communication. Beta activity was associated with motor preparation, while alpha activity reflected inhibitory mechanisms preventing overt articulation. Delta and theta bands demonstrated weaker, more fragmented connectivity, suggesting their involvement in rhythm and memory-related aspects of speech imagery. These findings provide new insights into the hierarchical organization of Imagined Speech, demonstrating that neural speech representation integrates sensory, motor, and executive processes. By distinguishing synchronization from causal influences and analyzing connectivity at both spatial and spectral levels, this study contributes to advancements in brain-computer interface (BCI) applications, supporting the development of more accurate decoding strategies for Imagined Speech-based communication.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Moroni_Executive_Summary_02.pdf
solo utenti autorizzati a partire dal 13/03/2026
Descrizione: Moroni - Executive Summary
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri |
2025_04_Moroni_Tesi_01.pdf
solo utenti autorizzati a partire dal 13/03/2026
Descrizione: Moroni - Tesi
Dimensione
33 MB
Formato
Adobe PDF
|
33 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235563