In the field of tissue engineering, heart‑on‑chip models are emerging as viable alternatives to animal testing for investigating cardiac pathophysiology and assessing drug toxicity at a preclinical stage. However, current heart‑on‑chip models do not reach the tissue maturation levels seen in vivo. Moreover, the strategies needed to fully replicate the heart niche in vitro have yet to be optimized. Conventional methods to evaluate cardiac tissue maturation—such as analyzing beating contraction and synchronicity—are user‑dependent, time‑consuming, and lack standardization, thereby hindering large‑scale application. In this study, a semi‑automatic pipeline to analyze videos of beating cardiomyocytes cultured on mechanically‑stimulated heart‑on‑chip platforms was developed. The pipeline is designed to provide quantitative data on the contraction and synchronicity of 3D cardiac tissues efficiently. To validate the pipeline, biological experiments were performed in which cardiac tissues were subjected to different mechanical stimulation patterns, and subsequent analyses identified which pattern led to greater maturation. Results indicate that the pipeline can extract key contractility metrics—such as contraction frequency, amplitude, and duration—as well as synchronicity parameters in a time-efficiently manner. This capability enables the optimization of mechanical stimulation parameters based on daily collected data, potentially driving enhanced tissue maturation. Notably, the pipeline accurately distinguishes between synchronous and asynchronous contractions, achieving 86% accuracy, 80% sensitivity, and 91% specificity. In addition, an electrical stimulation circuit with four independent outputs was developed to deliver electrical stimuli to cardiac microtissues, aiding in the recapitulation of the cardiac microenvironment. Overall, these advancements allow real‑time integration of data and dynamic regulation of electromechanical stimulation parameters, progressively enhancing heart‑on‑chip maturation to establish them as high‑fidelity preclinical models.
Nel campo dell’ingegneria tissutale, i modelli heart-on-chip si pongono sempre di più come una possibile alternativa ai test sugli animali per studiare la patofisiologia cardiaca e valutare la tossicità dei farmaci nelle fasi precliniche. Attualmente, nessun modello cardiaco raggiunge il grado di maturazione tissutale di un cuore in vivo, e le strategie per replicare fedelmente il microambiente cardiaco in laboratorio sono ancora in fase di ottimizzazione. Inoltre, i metodi tradizionali per valutare la maturazione –quali ad esempio l’analisi della contrazione– risultano spesso soggettivi, richiedono tempi lunghi e mancano di standardizzazione, elementi che ne limitano l’applicazione su larga scala. In questo studio è stata sviluppata una pipeline semi-automatica per l’analisi di video di cardiomiociti coltivati in piattaforme heart-on-chip sottoposte a stimolazione meccanica. L’obiettivo era ottenere, in modo rapido ed efficiente, dati quantitativi relativi alla contrazione e alla sincronicità dei tessuti cardiaci 3D. Per validare la pipeline, sono stati condotti esperimenti in cui i tessuti sono stati esposti a differenti pattern di stimolazione meccanica, al fine di identificare il protocollo che favorisse una migliore maturazione. I risultati indicano che la pipeline riesce a estrarre parametri chiave –quali frequenza, ampiezza e durata delle contrazioni– e a valutare la sincronicità quasi in tempo reale. Questo approccio consente di ottimizzare quotidianamente i parametri di stimolazione meccanica, con l'obiettivo di migliorare la maturazione del tessuto. In particolare, il sistema distingue con precisione tra contrazioni sincrone e asincrone, raggiungendo un’accuratezza dell'86%, una sensibilità dell'80% e una specificità del 91%. Inoltre, è stato progettato un circuito di stimolazione elettrica dotato di quattro uscite indipendenti, in grado di fornire stimoli elettrici ai tessuti cardiaci. I progressi realizzati in questo lavoro hanno permesso l’integrazione in tempo reale dei dati e la regolazione dinamica dei parametri di stimolazione, avvicinando ulteriormente i modelli heart-on-chip a uno stato di affidabilità preclinica.
Development of a semi-automated video analysis pipeline to drive cardiomyocyte maturation within a closed-loop electro-mechanical heart-on-chip system
Damiani, Valeria
2024/2025
Abstract
In the field of tissue engineering, heart‑on‑chip models are emerging as viable alternatives to animal testing for investigating cardiac pathophysiology and assessing drug toxicity at a preclinical stage. However, current heart‑on‑chip models do not reach the tissue maturation levels seen in vivo. Moreover, the strategies needed to fully replicate the heart niche in vitro have yet to be optimized. Conventional methods to evaluate cardiac tissue maturation—such as analyzing beating contraction and synchronicity—are user‑dependent, time‑consuming, and lack standardization, thereby hindering large‑scale application. In this study, a semi‑automatic pipeline to analyze videos of beating cardiomyocytes cultured on mechanically‑stimulated heart‑on‑chip platforms was developed. The pipeline is designed to provide quantitative data on the contraction and synchronicity of 3D cardiac tissues efficiently. To validate the pipeline, biological experiments were performed in which cardiac tissues were subjected to different mechanical stimulation patterns, and subsequent analyses identified which pattern led to greater maturation. Results indicate that the pipeline can extract key contractility metrics—such as contraction frequency, amplitude, and duration—as well as synchronicity parameters in a time-efficiently manner. This capability enables the optimization of mechanical stimulation parameters based on daily collected data, potentially driving enhanced tissue maturation. Notably, the pipeline accurately distinguishes between synchronous and asynchronous contractions, achieving 86% accuracy, 80% sensitivity, and 91% specificity. In addition, an electrical stimulation circuit with four independent outputs was developed to deliver electrical stimuli to cardiac microtissues, aiding in the recapitulation of the cardiac microenvironment. Overall, these advancements allow real‑time integration of data and dynamic regulation of electromechanical stimulation parameters, progressively enhancing heart‑on‑chip maturation to establish them as high‑fidelity preclinical models.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Damiani_Valeria_Executive_02.pdf
non accessibile
Dimensione
3.84 MB
Formato
Adobe PDF
|
3.84 MB | Adobe PDF | Visualizza/Apri |
2025_04_Damiani_Valeria_Thesis_01.pdf
non accessibile
Dimensione
27.32 MB
Formato
Adobe PDF
|
27.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235571