The integration of advanced imaging techniques is critical for enhancing biomedical diagnostics, particularly in detecting molecular markers within complex biological environments. This thesis explores the development and optimization of spatially offset Raman spectroscopy as a deep Raman-based approach for the detection of fluorinated nanoparticles in tissue-mimicking samples. The study is part of a broader project aimed at integrating Raman spectroscopy with \textsuperscript{19}F-MRI, providing a bimodal and multiscale imaging approach capable of both \textit{in vivo} whole-body detection at the submillimeter scale and \textit{in situ} applications up to the micrometer scale. The research addresses several key aspects. First, the characterization of fluorinated nanoparticles was conducted, focusing on their chemical composition and spectral fingerprint to enable precise identification within biological matrices, ensuring long-term tracking and stability assessment. Their interaction with biological cells was then investigated, providing critical insights into uptake dynamics, intracellular localization, and potential biodegradation pathways. A major contribution of this work is the design, development, and validation of an optimized spatially offset Raman spectroscopy setup, enhancing Raman signal penetration depth while effectively minimizing surface interference. This methodology was subsequently applied to tissue-mimicking phantoms, demonstrating its capability to detect nanoparticles at varying depths under conditions that closely replicate biological tissues. The findings of this study demonstrate that spatially offset Raman spectroscopy significantly enhances the subsurface detection of fluorinated probes, unlocking new possibilities in targeted drug delivery and intraoperative imaging. Future efforts will focus on refining the spatially offset Raman spectroscopy setup, exploring a wider range of tissue-mimicking phantoms with varying optical and structural properties, and extending the technique to \textit{in vivo} studies, having as ultimate goal to translate these findings into clinical and biomedical applications.
L'integrazione di tecniche di imaging avanzate è fondamentale per migliorare la diagnostica biomedica, in particolare per il rilevamento di marcatori molecolari all'interno di ambienti biologici complessi. Questa tesi esplora lo sviluppo e l'ottimizzazione della spatially offset Raman spectroscopy (SORS) come approccio Raman in profondità per la rilevazione di nanoparticelle fluorinate in campioni che simulano tessuti biologici. Lo studio si inserisce in un progetto più ampio volto a integrare la spettroscopia Raman con \textsuperscript{19}F-MRI, offrendo un approccio di imaging bimodale e multiscala, in grado di combinare il rilevamento \textit{in vivo} a livello di tutto il corpo su scala submillimetrica con applicazioni \textit{in situ} fino alla scala micrometrica. La ricerca affronta diversi aspetti chiave. In primo luogo, è stata condotta la caratterizzazione delle nanoparticelle fluorinate, analizzandone la composizione chimica e la firma spettrale per garantirne un'identificazione precisa all'interno di matrici biologiche, nonché per valutare la loro stabilità a lungo termine. Successivamente, è stata studiata la loro interazione con le cellule biologiche, fornendo informazioni fondamentali sui meccanismi di uptake, localizzazione intracellulare e potenziali vie di biodegradazione. Uno dei principali contributi di questo lavoro è la progettazione, sviluppo e validazione di un sistema ottimizzato di spatially offset Raman spectroscopy, migliorando la profondità di penetrazione del segnale Raman e riducendo efficacemente le interferenze superficiali. Questa metodologia è stata quindi applicata a phantom che simulano tessuti biologici, dimostrando la sua capacità di rilevare le nanoparticelle a diverse profondità in condizioni otticamente e strutturalmente realistiche. I risultati di questo studio dimostrano che la spatially offset Raman spectroscopy è in grado di migliorare significativamente il rilevamento in profondità delle sonde fluorinate, aprendo nuove prospettive nel drug delivery mirato e nell'imaging intraoperatorio. I futuri sviluppi si concentreranno sul perfezionamento del setup SORS, sull'esplorazione di phantom con proprietà ottiche e strutturali più diversificate e sull'estensione della tecnica a studi \textit{in vivo}, con l'obiettivo finale di tradurre questi risultati in applicazioni cliniche e biomediche.
Spatially offset Raman spectroscopy for depth-resolved detection of fluorinated nanoparticles in tissue-mimicking phantoms
Manna, Francesco
2024/2025
Abstract
The integration of advanced imaging techniques is critical for enhancing biomedical diagnostics, particularly in detecting molecular markers within complex biological environments. This thesis explores the development and optimization of spatially offset Raman spectroscopy as a deep Raman-based approach for the detection of fluorinated nanoparticles in tissue-mimicking samples. The study is part of a broader project aimed at integrating Raman spectroscopy with \textsuperscript{19}F-MRI, providing a bimodal and multiscale imaging approach capable of both \textit{in vivo} whole-body detection at the submillimeter scale and \textit{in situ} applications up to the micrometer scale. The research addresses several key aspects. First, the characterization of fluorinated nanoparticles was conducted, focusing on their chemical composition and spectral fingerprint to enable precise identification within biological matrices, ensuring long-term tracking and stability assessment. Their interaction with biological cells was then investigated, providing critical insights into uptake dynamics, intracellular localization, and potential biodegradation pathways. A major contribution of this work is the design, development, and validation of an optimized spatially offset Raman spectroscopy setup, enhancing Raman signal penetration depth while effectively minimizing surface interference. This methodology was subsequently applied to tissue-mimicking phantoms, demonstrating its capability to detect nanoparticles at varying depths under conditions that closely replicate biological tissues. The findings of this study demonstrate that spatially offset Raman spectroscopy significantly enhances the subsurface detection of fluorinated probes, unlocking new possibilities in targeted drug delivery and intraoperative imaging. Future efforts will focus on refining the spatially offset Raman spectroscopy setup, exploring a wider range of tissue-mimicking phantoms with varying optical and structural properties, and extending the technique to \textit{in vivo} studies, having as ultimate goal to translate these findings into clinical and biomedical applications.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Manna_Tesi.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
40.44 MB
Formato
Adobe PDF
|
40.44 MB | Adobe PDF | Visualizza/Apri |
2025_04_Manna_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.41 MB
Formato
Adobe PDF
|
1.41 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235629