Lab–on–chip (LoC) devices have emerged as a promising technology for the detection of chemical analytes in several domains of science, ranging from medical diagnostics to environmental analysis. LoCs feature several peculiar advantages, by virtue of their miniaturized nature, such as minimal sample consumption, high portability, and reduced analysis time. Microfluidic technology, that is the manipulation of small amount of fluids via micrometric–sized structures, permits the integration on miniaturized platforms of the needed functionalities for chemical analyses. Optofluidic LoCs leverage the synergetic combination of microfluidics and photonics. Such devices have stood out, among miniaturized devices, due to their robustness and high sensitivity of detection. Amongst the different optical investigation techniques, Raman spectroscopy has grown popular since it enables the non–invasive and label–free identification of chemical species, basing on the inelastically–scattered signal that emerges from a sample when irradiated by a coherent light source. Given their respective strengths, the union between microfluidics and Raman spectroscopy is potentially extremely useful. However, due to the weak nature of Raman scattering and the small sample volumes involved in microfluidics, an endeavour is needed to enhance the sensitivity of Raman–based LoC systems. To avoid the usage of bulky and expensive optical setups, an interesting option to perform on–chip Raman spectroscopy is to exploit optical fibres. This approach improves the portability, reduces costs and can help in limiting the noise of the measurement. This work presents an all–glass optofluidic LoC that enables in–fibre Raman spectroscopy of flowing samples. The adopted fabrication technique for the device is femtosecond–laser irradiation followed by chemical etching (FLICE). The operation of the device is characterised and a two–fold increase in its sensitivity is achieved by means of an integrated optical micromirror. The SNR improvement observed in this work hopes to push towards the realisation of more portable, low–cost, and real–time Raman applications.
I dispositivi lab–on–chip (LoC) rappresentano una promettente tecnologia di identificazione di specie chimiche per diversi ambiti scientifici, dalla diagnostica medica alle analisi ambientali. I vantaggi degli LoC, come il consumo ridotto di campione, l’elevata portabilità e la brevità delle analisi, discendono della loro natura miniaturizzata. La microfluidica, ovvero la manipolazione di piccole quantità di fluido con strutture micrometriche, permette l’integrazione su chip delle funzionalità necessarie per un’analisi chimica. Gli LoC optofluidici sfruttano la sinergia tra microfluidica e fotonica, grazie alla quale si distinguono, tra gli altri LoC, per robustezza e sensibilità di rilevazione. Tra le tecniche di analisi ottica, la spettroscopia Raman ha acquisito popolarità poiché consente l’identificazione non invasiva e label–free di specie chimiche, basandosi sul segnale diffuso anelasticamente da un campione irradiato con una sorgente di luce coerente. L’unione tra microfluidica e spettroscopia Raman è potenzialmente di estrema utilità. Tuttavia, la debolezza del segnale Raman e gli esigui volumi di campione in un sistema microfluidico, rendono necessario un miglioramento della sensibilità dei sistemi LoC Raman. Per evitare l’uso di setup ottici ingombranti e costosi, una possibile alternativa prevede di eseguire la spettroscopia Raman su chip tramite fibre ottiche. Ciò migliora la portabilità, riduce i costi e contribuisce a limitare il rumore generato durante la misura. In questo lavoro è presentato un LoC optofluidico in vetro, che consente di eseguire la spettroscopia Raman, in fibra, di campioni fluidi. La tecnica di fabbricazione adottata è la femtosecond–laser irradiation followed by chemical etching (FLICE). In primis, il funzionamento del dispositivo è caratterizzato, e successivamente è riportato un incremento di sensibilità di un fattore due, ottenuto con l’integrazione di uno specchio microottico. Il miglioramento del SNR osservato in questo lavoro spera di contribuire alla diffusione di un numero crescente di applicazioni Raman portabili, economiche ed eseguite in tempo reale.
Optofluidic device for the improvement of SNR in spontaneous Raman spectroscopy of flowing samples
Devecchi, Andrea
2023/2024
Abstract
Lab–on–chip (LoC) devices have emerged as a promising technology for the detection of chemical analytes in several domains of science, ranging from medical diagnostics to environmental analysis. LoCs feature several peculiar advantages, by virtue of their miniaturized nature, such as minimal sample consumption, high portability, and reduced analysis time. Microfluidic technology, that is the manipulation of small amount of fluids via micrometric–sized structures, permits the integration on miniaturized platforms of the needed functionalities for chemical analyses. Optofluidic LoCs leverage the synergetic combination of microfluidics and photonics. Such devices have stood out, among miniaturized devices, due to their robustness and high sensitivity of detection. Amongst the different optical investigation techniques, Raman spectroscopy has grown popular since it enables the non–invasive and label–free identification of chemical species, basing on the inelastically–scattered signal that emerges from a sample when irradiated by a coherent light source. Given their respective strengths, the union between microfluidics and Raman spectroscopy is potentially extremely useful. However, due to the weak nature of Raman scattering and the small sample volumes involved in microfluidics, an endeavour is needed to enhance the sensitivity of Raman–based LoC systems. To avoid the usage of bulky and expensive optical setups, an interesting option to perform on–chip Raman spectroscopy is to exploit optical fibres. This approach improves the portability, reduces costs and can help in limiting the noise of the measurement. This work presents an all–glass optofluidic LoC that enables in–fibre Raman spectroscopy of flowing samples. The adopted fabrication technique for the device is femtosecond–laser irradiation followed by chemical etching (FLICE). The operation of the device is characterised and a two–fold increase in its sensitivity is achieved by means of an integrated optical micromirror. The SNR improvement observed in this work hopes to push towards the realisation of more portable, low–cost, and real–time Raman applications.File | Dimensione | Formato | |
---|---|---|---|
2025_4_Devecchi_Tesi.pdf
accessibile in internet per tutti a partire dal 01/04/2026
Descrizione: Testo di tesi
Dimensione
31.19 MB
Formato
Adobe PDF
|
31.19 MB | Adobe PDF | Visualizza/Apri |
2025_4_Devecchi_Executive Summary.pdf
accessibile in internet per tutti a partire dal 01/04/2026
Descrizione: Testo di executive summary
Dimensione
5.59 MB
Formato
Adobe PDF
|
5.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235770