Wildfires significantly alter the hydrological and geotechnical properties of soils, affecting infiltration, runoff dynamics, and slope stability. This thesis investigates wildfire-induced changes in soil hydrology and slope stability through laboratory experiments using a landslide simulator, combined with analytical modeling using the SLIP model. The experiments analysed the response of homogeneous sand compared to burned and unburned natural soil samples under varying controlled rainfall intensities and slope inclinations. Differences in infiltration capacity, runoff behavior, and failure mechanisms were evaluated through a comparative analysis of experiment clusters. The experimental results indicate that burned soil exhibits higher infiltration rates compared to unburned soil, primarily due to increased hydraulic conductivity rather than water repellency. Contrary to common assumptions, significant hydrophobicity was not observed in burned soil during the experiments. Instead, its higher porosity and permeability facilitated deeper water infiltration, delaying runoff initiation. However, structural changes and reduced cohesion in burned soil led to increased infiltration and localized saturation, which reduced shear strength and influenced slope stability. The analytical SLIP model was applied to assess the factor of safety (Fs) under different conditions, showing reliable failure predictions for homogeneous sand slopes. However, in cases where burned or unburned soil overlays sand, the model exhibited discrepancies, often underestimating failure timing or occurrence due to the complexity of heterogeneous soil layers. These findings highlight the model’s limitations in capturing the influence of variable porosity, structural weakening, and reduced cohesion on slope stability. By comparing laboratory experiments with SLIP model predictions, this research assesses the model’s reliability under different soil conditions. The findings emphasize the need to account for hydraulic conductivity, initial volumetric water content, and soil heterogeneity in post-wildfire slope stability assessments.
Gli incendi boschivi alterano significativamente le proprietà idrologiche e geotecniche dei suoli, influenzando l’infiltrazione, la dinamica del deflusso e la stabilità dei pendii. Questa tesi indaga le modifiche indotte dagli incendi sulla idrologia del suolo e sulla stabilità dei pendii attraverso esperimenti di laboratorio utilizzando un simulatore di frane, combinati con la modellazione analitica mediante il modello SLIP. Gli esperimenti hanno analizzato la risposta della sabbia omogenea rispetto a campioni di suolo naturale bruciato e non bruciato, sottoposti a diverse intensità di pioggia controllate e inclinazioni del pendio. Le differenze nella capacità di infiltrazione, nel comportamento del deflusso e nei meccanismi di cedimento sono state valutate attraverso un’analisi comparativa di gruppi sperimentali. I risultati sperimentali indicano che il suolo bruciato presenta tassi di infiltrazione più elevati rispetto al suolo non bruciato, principalmente a causa dell’aumento della conducibilità idraulica piuttosto che dell’idrofobicità. Contrariamente alle ipotesi comuni, nei test condotti non è stata osservata un’idrofobicità significativa nel suolo bruciato. Al contrario, la sua maggiore porosità e permeabilità hanno facilitato un’infiltrazione più profonda dell’acqua, ritardando l’inizio del deflusso. Tuttavia, le modifiche strutturali e la ridotta coesione nel suolo bruciato hanno portato a un aumento dell’infiltrazione e a una saturazione localizzata, riducendo la resistenza al taglio e influenzando la stabilità del pendio. Il modello analitico SLIP è stato applicato per valutare il fattore di sicurezza (Fs) in diverse condizioni, mostrando previsioni affidabili di cedimento per pendii di sabbia omogenea. Tuttavia, nei casi in cui il suolo bruciato o non bruciato sovrasta uno strato di sabbia, il modello ha mostrato discrepanze, sottostimando spesso i tempi o l’occorrenza del cedimento a causa della complessità degli strati di suolo eterogeneo. Questi risultati evidenziano le limitazioni del modello nel rappresentare l’influenza della porosità variabile, dell’indebolimento strutturale e della ridotta coesione sulla stabilità dei pendii. Confrontando gli esperimenti di laboratorio con le previsioni del modello SLIP, questa ricerca valuta l’affidabilità del modello in diverse condizioni del suolo. I risultati sottolineano la necessità di considerare la conducibilità idraulica, il contenuto volumetrico iniziale di acqua e l’eterogeneità del suolo nelle valutazioni della stabilità dei pendii post-incendio.
Wildfire-induced changes in soil hydrology and slope stability: experimental and analytical assessment using the SLIP Model
Esfandi, Roya
2024/2025
Abstract
Wildfires significantly alter the hydrological and geotechnical properties of soils, affecting infiltration, runoff dynamics, and slope stability. This thesis investigates wildfire-induced changes in soil hydrology and slope stability through laboratory experiments using a landslide simulator, combined with analytical modeling using the SLIP model. The experiments analysed the response of homogeneous sand compared to burned and unburned natural soil samples under varying controlled rainfall intensities and slope inclinations. Differences in infiltration capacity, runoff behavior, and failure mechanisms were evaluated through a comparative analysis of experiment clusters. The experimental results indicate that burned soil exhibits higher infiltration rates compared to unburned soil, primarily due to increased hydraulic conductivity rather than water repellency. Contrary to common assumptions, significant hydrophobicity was not observed in burned soil during the experiments. Instead, its higher porosity and permeability facilitated deeper water infiltration, delaying runoff initiation. However, structural changes and reduced cohesion in burned soil led to increased infiltration and localized saturation, which reduced shear strength and influenced slope stability. The analytical SLIP model was applied to assess the factor of safety (Fs) under different conditions, showing reliable failure predictions for homogeneous sand slopes. However, in cases where burned or unburned soil overlays sand, the model exhibited discrepancies, often underestimating failure timing or occurrence due to the complexity of heterogeneous soil layers. These findings highlight the model’s limitations in capturing the influence of variable porosity, structural weakening, and reduced cohesion on slope stability. By comparing laboratory experiments with SLIP model predictions, this research assesses the model’s reliability under different soil conditions. The findings emphasize the need to account for hydraulic conductivity, initial volumetric water content, and soil heterogeneity in post-wildfire slope stability assessments.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Esfandi.pdf
non accessibile
Dimensione
4.26 MB
Formato
Adobe PDF
|
4.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235808