The present study addresses the design, development, and analysis of customized subpe- riosteal implants for dental surgery, with a particular focus on patient-specific modeling methodologies and advanced biomechanical analyses. Subperiosteal implants provide an effective solution for patients with severe maxillary or mandibular bone atrophy, for whom traditional implantology techniques are not viable. The study explores medical imaging technologies, such as cone beam computed tomog- raphy (CBCT), and segmentation techniques for the three-dimensional reconstruction of bone structures. Additionally, it delves into the assignment of mechanical properties to hard tissues and the implementation of numerical simulations using the finite element method (FEM) to assess the structural behavior of implants under realistic loading con- ditions. This thesis includes a detailed analysis of the materials used in the fabrication of implants, with a particular focus on titanium alloys, evaluating their biomechanical advantages with an emphasis on osseointegration. Lastly, the regulatory framework governing the certification and safety of such medical devices, classified as custom-made devices, is discussed. The results demonstrate that a digital approach based on CAD modeling enables greater precision in design and improved anatomical adaptation, reducing the risk of intra- and post-operative complications. The combination of advanced technologies and numerical simulations represents a significant step towards more reliable and personalized implant solutions for patients with severe and complex conditions.
Il seguente elaborato affronta la progettazione, lo sviluppo e l’analisi di impianti sub- periosteipersonalizzatiperlachirurgiadentale,facendoparticolareattenzioneallemetodolo- gie di modellazione paziente-specifica e alle analisi biomeccaniche avanzate. Gli impianti sub-periostei rappresentano una soluzione efficace per pazienti con grave atrofia ossea mascellare o mandibolare, per i quali le tecniche implantologiche tradizionali risultano inapplicabili. L’elaborato esplora le tecnologie di imaging medico, come la tomografia computerizzata a fascio conico (cbCT), e le tecniche di segmentazione per la ricostruzione tridimension- ale delle strutture ossee. Viene approfondito il processo di assegnazione delle proprietà meccaniche ai tessuti duri e l’implementazione di simulazioni numeriche tramite il metodo degli elementi finiti (FEM), al fine di valutare il comportamento strutturale degli impianti in condizioni di carico realistico. La tesi include un’analisi dettagliata sui materiali impiegati per la realizzazione degli impianti, con particolare attenzione alle leghe di titanio, valutandone i vantaggi biomec- canici con attenzione all’osteointegrazione. Infine, viene discusso il quadro normativo di riferimento per la certificazione e la sicurezza di tali dispositivi medici, classificati come dispositivi "custom-made". I risultati ottenuti dimostrano che l’approccio digitale basato su modellazione CAD con- sente una maggiore precisione nella progettazione e un miglior adattamento anatomico, riducendo il rischio di complicanze intra e post-operatorie. La combinazione di tecnologie avanzate e simulazioni numeriche rappresenta un passo significativo verso soluzioni im- plantologiche più affidabili e personalizzate per pazienti che presentano condizioni severe e acute.
Patient-specific models of subperiosteal implants in dental surgery
PERUZZI, LUCA
2023/2024
Abstract
The present study addresses the design, development, and analysis of customized subpe- riosteal implants for dental surgery, with a particular focus on patient-specific modeling methodologies and advanced biomechanical analyses. Subperiosteal implants provide an effective solution for patients with severe maxillary or mandibular bone atrophy, for whom traditional implantology techniques are not viable. The study explores medical imaging technologies, such as cone beam computed tomog- raphy (CBCT), and segmentation techniques for the three-dimensional reconstruction of bone structures. Additionally, it delves into the assignment of mechanical properties to hard tissues and the implementation of numerical simulations using the finite element method (FEM) to assess the structural behavior of implants under realistic loading con- ditions. This thesis includes a detailed analysis of the materials used in the fabrication of implants, with a particular focus on titanium alloys, evaluating their biomechanical advantages with an emphasis on osseointegration. Lastly, the regulatory framework governing the certification and safety of such medical devices, classified as custom-made devices, is discussed. The results demonstrate that a digital approach based on CAD modeling enables greater precision in design and improved anatomical adaptation, reducing the risk of intra- and post-operative complications. The combination of advanced technologies and numerical simulations represents a significant step towards more reliable and personalized implant solutions for patients with severe and complex conditions.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Peruzzi_Executive Summary.pdf
accessibile in internet per tutti
Dimensione
3.56 MB
Formato
Adobe PDF
|
3.56 MB | Adobe PDF | Visualizza/Apri |
2025_04_Peruzzi_01.pdf
accessibile in internet per tutti
Dimensione
25.89 MB
Formato
Adobe PDF
|
25.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235822