This thesis is focused on the analysis and development of small in-space liquid propulsion units utilizing “green” and self-pressurizing technologies. The project begins with an in-depth theoretical comparison and analysis of potential fuel candidates, selected through an extensive literature review for compatibility with Nitrous Oxide (N2O) as the oxidizer. One fuel is ultimately elected as the optimal solution, based on its favorable thermophysical properties and suitability with self-pressurization systems. This decision is further supported by a weighted Decision Analysis and Resolution (DAR) method, rigorously quantifying the strengths and weaknesses of each candidate fuel. Following the fuel selection, a transient thermal model is developed to simulate the temperature distribution within thrusters incorporating different regenerative cooling configurations. This model is specifically designed to improve the accuracy of thermal predictions during operation. Subsequently, an experimental campaign is carried out to ensure the model’s validity, where thrusters featuring different regenerative cooling configurations are tested under atmospheric conditions. The tests are conducted at various stages of operation, and key performance data are collected for comparison with model predictions. Finally, the experimental data are used to calibrate the model’s empirical coefficients and assess the performance of the propellant combination. The results show that the model accurately predicts thruster behavior, providing valuable insights into the design and performance of green propulsion systems for small-scale in-space applications.
Questa tesi si concentra sull’analisi e lo sviluppo di unità di propulsione spaziale di dimensioni ridotte che utilizzano tecnologie "verdi" e auto-pressurizanti. Il progetto inizia con un paragone teorico accurato e un’analisi di potenziali candidati come combustibili, scelti in seguito ad un’approfondita ricerca nella letteratura per soluzioni compatibili con il protossido di azoto (N2O) come ossidante. Un combustibile è infine selezionato in base alle sue proprietà termofisiche favorevoli e compatibili con sistemi auto-pressurizanti. La decisione è supportata inoltre tramite un metodo pesato di analisi e risoluzione delle decisioni (DAR), che quantifica rigorosamente i vantaggi e gli svantaggi di ogni combustibile candidato. In seguito alla selezione, un modello termico transitorio viene sviluppato per simulare la distribuzione di temperatura all’interno di propulsori che utilizzano diverse configurazioni di raffreddamento rigenerativo. Il modello ha lo scopo di migliorare l’accuratezza della simulazione del comporamento termico. Successivamente, una campagna sperimentale è svolta per assicurare la validità del modello, testando a pressione atmosferica propulsori con soluzioni di raffreddamento rigenerativo di vario tipo. I test sono condotti a varie condizioni, e i principali indicatori delle prestazioni sono raccolti per confrontarli con i risultati del modello. I dati sperimentali sono infine sfruttati per calibrare i coefficienti empirici del modello e valutare il comportamento della coppia di propellenti. I risultati mostrano come il modello simuli accuratamente il comportamento del propulsore, fornendo indicazioni preziose per il design e le prestazioni di sistemi propulsivi "verdi" di piccola scala per applicazioni spaziali.
Thermal model design and verification for in-space propulsion units involving green and self-pressurized propellants
Pitussi, Francesco;Karaaliler, Hazal
2023/2024
Abstract
This thesis is focused on the analysis and development of small in-space liquid propulsion units utilizing “green” and self-pressurizing technologies. The project begins with an in-depth theoretical comparison and analysis of potential fuel candidates, selected through an extensive literature review for compatibility with Nitrous Oxide (N2O) as the oxidizer. One fuel is ultimately elected as the optimal solution, based on its favorable thermophysical properties and suitability with self-pressurization systems. This decision is further supported by a weighted Decision Analysis and Resolution (DAR) method, rigorously quantifying the strengths and weaknesses of each candidate fuel. Following the fuel selection, a transient thermal model is developed to simulate the temperature distribution within thrusters incorporating different regenerative cooling configurations. This model is specifically designed to improve the accuracy of thermal predictions during operation. Subsequently, an experimental campaign is carried out to ensure the model’s validity, where thrusters featuring different regenerative cooling configurations are tested under atmospheric conditions. The tests are conducted at various stages of operation, and key performance data are collected for comparison with model predictions. Finally, the experimental data are used to calibrate the model’s empirical coefficients and assess the performance of the propellant combination. The results show that the model accurately predicts thruster behavior, providing valuable insights into the design and performance of green propulsion systems for small-scale in-space applications.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Pitussi_Karaaliler_Thesis_01.pdf
non accessibile
Descrizione: Thesis Report
Dimensione
38.82 MB
Formato
Adobe PDF
|
38.82 MB | Adobe PDF | Visualizza/Apri |
2025_04_Pitussi_Karaaliler_Executive_Summary_02.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
4.14 MB
Formato
Adobe PDF
|
4.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235852