Lumbar Interbody Fusion (LIF) is a well-established treatment for a variety of lumbar spine disorders, involving the implantation of an interbody cage within the intervertebral space and a fixation system. Cages are mainly produced in titanium, PEEK, or a combination of the two, showing optimal biocompatibility, stabilization of the anatomical structures, and mechanical strength. However, titanium’s high elastic modulus leads to stress shielding and high levels of subsidence, while PEEK’s chemical inertness increases the risk of pseudoarthrosis. Additionally, their non-bioresorbable nature could result in long-term drawbacks. In this context, a commercially available bioresorbable ceramic material developed through an innovative biomorphic process is deemed an ideal candidate for LIF procedures, having demonstrated excellent clinical results in treating bone defects in extremities. The primary objective of this thesis is to evaluate the feasibility of using a ceramic as an alternative to standard cage materials. The study consists of two main phases: an experimental campaign and the numerical simulation of the LIF procedure using ceramic cages. Based on a previous study, two aspects of the material were evaluated to complement its mechanical characterization: transverse compression behavior, considering its anisotropic structure, and permeability, a key parameter in determining the success of a bone scaffold. The numerical model simulating a Lateral Lumbar Interbody Fusion (LLIF) procedure using ceramic cages was developed to analyze the mechanical resistance of the material with different cage geometries and loading conditions. The simulations revealed that a 30 mm-long cage, the maximum producible length, exhibits the lowest failure rate. However, the addition of holes, essential for bone integration and surgical manipulation, increases the failure rate. Notably, graft fillings show promising results in mitigating structural weakness due to holes. In conclusion, the optimal configuration in terms of vertical and transverse holes was found to maximize mechanical resistance, enabling the cage to withstand physiological loads effectively.
La Fusione Intervertebrale Lombare (LIF) è un trattamento consolidato per diverse patologie della regione lombare, che prevede l'impianto di una cage intersomatica e un sistema di fissaggio. Le cage sono solitamente realizzate in titanio, PEEK o in una loro combinazione, garantendo biocompatibilità, stabilità e resistenza meccanica. Tuttavia, l'elevato modulo elastico del titanio causa stress shielding e elevati livelli di subsidenza, mentre il PEEK, essendo idrofobico, aumenta il rischio di pseudoartrosi. Inoltre, non essendo bioriassorbibili, possono causare svantaggi a lungo termine. In questo contesto, un materiale ceramico bioriassorbibile sviluppato con un innovativo processo biomorfico è considerato un candidato ideale per le procedure di LIF, dati i buoni risultati clinici nel trattamento di difetti ossei negli arti. Questa tesi vuole valutare la fattibilità dell'uso di una cermica come materiale alternativo per cage. Lo studio comprende due fasi principali: una campagna sperimentale e la simulazione numerica della procedura di LIF con cage ceramiche. Basandosi su uno studio precedente, sono stati analizzati due aspetti del materiale per completarne la caratterizzazione meccanica: il comportamento a compressione trasversale, considerando la sua struttura anisotropa, e la permeabilità, fondamentale per determinare il successo di uno scaffold osseo. Il modello numerico sviluppato simula una procedura di Fusione Intervertebrale Lombare Laterale (LLIF) con cage ceramiche. per analizzarne la resistenza meccanica con diverse geometrie di cage e condizioni di carico. Le simulazioni mostrano che una cage di 30 mm, la lunghezza massima producibile, presenta il tasso di fallimento più basso. L'aggiunta di fori, necessari per l'integrazione ossea e la manipolazione chirurgica, aumenta il tasso di fallimento. Tuttavia, il riempimento con graft si è rivelato promettente nel mitigare la debolezza strutturale causata dai fori. In conclusione, è stata identificata la configurazione ottimale di fori verticali e trasversali che massimizza la resistenza meccanica, consentendo alla cage di sostenere i carichi fisiologici.
Mechanical characterization and computational modeling of a bioresorbable ceramic cage for intervertebral fusion
Crivellaro, Camilla;Brambilla, Giorgia
2023/2024
Abstract
Lumbar Interbody Fusion (LIF) is a well-established treatment for a variety of lumbar spine disorders, involving the implantation of an interbody cage within the intervertebral space and a fixation system. Cages are mainly produced in titanium, PEEK, or a combination of the two, showing optimal biocompatibility, stabilization of the anatomical structures, and mechanical strength. However, titanium’s high elastic modulus leads to stress shielding and high levels of subsidence, while PEEK’s chemical inertness increases the risk of pseudoarthrosis. Additionally, their non-bioresorbable nature could result in long-term drawbacks. In this context, a commercially available bioresorbable ceramic material developed through an innovative biomorphic process is deemed an ideal candidate for LIF procedures, having demonstrated excellent clinical results in treating bone defects in extremities. The primary objective of this thesis is to evaluate the feasibility of using a ceramic as an alternative to standard cage materials. The study consists of two main phases: an experimental campaign and the numerical simulation of the LIF procedure using ceramic cages. Based on a previous study, two aspects of the material were evaluated to complement its mechanical characterization: transverse compression behavior, considering its anisotropic structure, and permeability, a key parameter in determining the success of a bone scaffold. The numerical model simulating a Lateral Lumbar Interbody Fusion (LLIF) procedure using ceramic cages was developed to analyze the mechanical resistance of the material with different cage geometries and loading conditions. The simulations revealed that a 30 mm-long cage, the maximum producible length, exhibits the lowest failure rate. However, the addition of holes, essential for bone integration and surgical manipulation, increases the failure rate. Notably, graft fillings show promising results in mitigating structural weakness due to holes. In conclusion, the optimal configuration in terms of vertical and transverse holes was found to maximize mechanical resistance, enabling the cage to withstand physiological loads effectively.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Brambilla_Crivellaro_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri |
2025_04_Brambilla_Crivellaro_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
39.01 MB
Formato
Adobe PDF
|
39.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235854