This thesis presents innovative measurements of the microscopic dynamics of a metallic glass under extreme conditions, obtained through X-ray Photon Correlation Spectroscopy (XPCS). The primary goal is to study the behavior of the metallic glass P t42.5Cu27N i9.5P21, known for its high thermal stability against crystallization, as a function of temperature and pressure. The measurements were performed at the ID10 beamline of the European Synchrotron Radiation Facility (ESRF), leveraging the Extremely Brilliant Source (EBS) upgrade to achieve higher brilliance and coherence of the X-ray beam. A new experimental setup was developed, combining XPCS with a high-pressure environment, using a Diamond Anvil Cell (DAC) to reach pressures up to several gigapascals. The data analysis focuses on the intensity autocorrelation functions and the two-time correlation functions (TTCFs) to study the relaxation processes of the sample across the glass transition region. The results show how increasing pressure affects the dynamics of the metallic glass, leading to a slowdown of relaxation times at constant temperature, an increase in the glass transition temperature, and greater dynamic homogeneity. Furthermore, an isothermal measurement protocol was tested to highlight the effect of pressure on the thermodynamic state of the system, observing the relaxation towards the supercooled liquid state at higher pressure. Measurements on the dynamics were carried out alongside complementary structural ones using standard X-ray diffraction (XRD). The obtained results contribute to the understanding of the dynamic properties of metallic glasses under extreme conditions and pave the way for new and interesting developments.
Questa tesi presenta misure innovative delle dinamiche microscopiche di un vetro metallico in condizioni estreme, ottenute attraverso la tecnica di X-rays Photon Correlation Spectroscopy (XPCS). L’obiettivo principale è studiare il comportamento del vetro metallico P t42.5Cu27N i9.5P21, noto per la sua elevata stabilità termica contro la cristallizzazione, in funzione della temperatura e della pressione. Le misure sono state effettuate presso la beamline ID10 della European Synchrotron Radiation Facility (ESRF), sfruttando l’aggiornamento Extremely Brilliant Source (EBS) per ottenere una maggiore brillantezza e coerenza del fascio di raggi X. È stato sviluppato un nuovo setup sperimentale, combinando l’XPCS con un ambiente ad alta pressione, utilizzando una Daimaond Anvill Cell (DAC) per raggiungere pressioni fino a diversi gigapascal. L’analisi dei dati si concentra sulle funzioni di autocorrelazione dell’intensità e sulle funzioni di correlazione a due tempi (TTCF) per studiare i processi di rilassamento del campione nella regione caratteristica della transizione vetrosa. I risultati mostrano come l’aumento della pressione influenzi la dinamica del vetro metallico, portando a un rallentamento dei tempi di rilassamento a temperatura costante, a un incremento della temperatura di transizione vetrosa e a una maggiore omogeneità dinamica. Inoltre, è stato testato un protocollo di misura isotermica per evidenziare l’effetto della pressione sullo stato termodinamico del sistema, osservando il rilassamento verso lo stato di liquido superraffreddato a pressioni più elevate. Le misure sulle dinamiche sono state affiancate da misure strutturali complementari utilizzando la diffrazione standard di raggi X (XRD). I risultati ottenuti contribuiscono alla comprensione delle proprietà dinamiche dei vetri metallici in condizioni estreme e aprono la strada a nuovi e interessanti sviluppi.
First measurements of the microscopic dynamic of a metal glass at extreme condition using XPCS
PEREGO, LUCA
2023/2024
Abstract
This thesis presents innovative measurements of the microscopic dynamics of a metallic glass under extreme conditions, obtained through X-ray Photon Correlation Spectroscopy (XPCS). The primary goal is to study the behavior of the metallic glass P t42.5Cu27N i9.5P21, known for its high thermal stability against crystallization, as a function of temperature and pressure. The measurements were performed at the ID10 beamline of the European Synchrotron Radiation Facility (ESRF), leveraging the Extremely Brilliant Source (EBS) upgrade to achieve higher brilliance and coherence of the X-ray beam. A new experimental setup was developed, combining XPCS with a high-pressure environment, using a Diamond Anvil Cell (DAC) to reach pressures up to several gigapascals. The data analysis focuses on the intensity autocorrelation functions and the two-time correlation functions (TTCFs) to study the relaxation processes of the sample across the glass transition region. The results show how increasing pressure affects the dynamics of the metallic glass, leading to a slowdown of relaxation times at constant temperature, an increase in the glass transition temperature, and greater dynamic homogeneity. Furthermore, an isothermal measurement protocol was tested to highlight the effect of pressure on the thermodynamic state of the system, observing the relaxation towards the supercooled liquid state at higher pressure. Measurements on the dynamics were carried out alongside complementary structural ones using standard X-ray diffraction (XRD). The obtained results contribute to the understanding of the dynamic properties of metallic glasses under extreme conditions and pave the way for new and interesting developments.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Perego_Thesis_01.pdf
accessibile in internet per tutti
Descrizione: thesis manuscript
Dimensione
100.46 MB
Formato
Adobe PDF
|
100.46 MB | Adobe PDF | Visualizza/Apri |
2025_04_Perego_Executive Summary_02.pdf
accessibile in internet per tutti
Descrizione: executive summary
Dimensione
3.17 MB
Formato
Adobe PDF
|
3.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235863