The veterinary market is experiencing rapid expansion, driven by technological advancements and the growing demand for specialized orthopedic treatments. In this regard, Finite Element Models are emerging as a powerful tool for simulating the biomechanical behavior of various anatomical regions, contributing to a better understanding of the underlying causes of spinal injuries. Moreover, accurate modeling helps integrate clinical studies by assessing the impact of prosthetic devices. However, the modeling of the canine spine remains largely unexplored, as spinal research has predominantly focused on the human domain. This study fits into this context by aiming to develop a Finite Element Model of the canine lumbar spine, specifically focusing on the German Shepherd breed under gait-induced loading conditions. By integrating Computed Tomography images, segmentation techniques, and discretization strategies, the model is designed to ensure an appropriate biomechanical representation of the anatomical region. Ligament modeling has been implemented using two different approaches: (i) deformable wires of planar type with predefined material properties and (ii) nonlinear springs based on a force-deflection curve. To identify the most accurate representation between the two, a comparative sensitivity analysis was performed, followed by an evaluation of stress, pressure, and displacement distributions on the discs to validate the model’s accuracy. The final model, composed of two functional units (L1-L3), exhibits a Range Of Motion in flexion consistent with experimental data reported in the literature and can therefore be considered reliable.
Il mercato veterinario sta vivendo una rapida espansione, trainata dai progressi tecnologici e dalla crescente domanda di trattamenti ortopedici specializzati. A tal proposito, i Modelli ad Elementi Finiti si stanno affermando come potente strumento per la simulazione del comportamento biomeccanico di diversi distretti, contribuendo ad una migliore comprensione delle cause alla base delle lesioni spinali. Inoltre, una modellazione accurata consente di integrare gli studi clinici, valutando l'impatto dei dispositivi protesici. Tuttavia, la modellazione della colonna vertebrale canina rimane ad ora poco esplorata in quanto lo studio in ambito spinale è concentrato sulla sfera umana. Il presente lavoro si inserisce in tale contesto proponendosi di sviluppare un Modello agli Elementi Finiti della colonna lombare canina, focalizzandosi sulla razza del Pastore Tedesco in condizioni di carico indotte dal cammino. Nello specifico, integrando immagini di Tomografia Computerizzata, tecniche di segmentazione e strategie di discretizzazione, il modello è progettato per garantire un’opportuna rappresentazione del distretto anatomico in termini biomeccanici. La modellazione dei legamenti è stata implementata utilizzando due differenti approcci: (i) wires deformabili di tipo planare con proprietà dei materiali predefinite e (ii) molle non lineari basate su una curva forza-spostamento. Per identificare la rappresentazione più accurata tra le due è stata eseguita un'analisi di sensibilità comparativa, seguita da una valutazione delle distribuzioni di sforzo, pressione e spostamento sui dischi con l’obiettivo di convalidare la precisione del modello. Quest’ultimo, composto da due unità funzionali (L1-L3), presenta un Range Of Motion in flessione in accordo con i dati sperimentali riportati in letteratura e pertanto può essere considerato affidabile.
Development of a finite element model of the lumbar vertebral column of a german shepherd during walking
BERGAMINI, GIULIA
2023/2024
Abstract
The veterinary market is experiencing rapid expansion, driven by technological advancements and the growing demand for specialized orthopedic treatments. In this regard, Finite Element Models are emerging as a powerful tool for simulating the biomechanical behavior of various anatomical regions, contributing to a better understanding of the underlying causes of spinal injuries. Moreover, accurate modeling helps integrate clinical studies by assessing the impact of prosthetic devices. However, the modeling of the canine spine remains largely unexplored, as spinal research has predominantly focused on the human domain. This study fits into this context by aiming to develop a Finite Element Model of the canine lumbar spine, specifically focusing on the German Shepherd breed under gait-induced loading conditions. By integrating Computed Tomography images, segmentation techniques, and discretization strategies, the model is designed to ensure an appropriate biomechanical representation of the anatomical region. Ligament modeling has been implemented using two different approaches: (i) deformable wires of planar type with predefined material properties and (ii) nonlinear springs based on a force-deflection curve. To identify the most accurate representation between the two, a comparative sensitivity analysis was performed, followed by an evaluation of stress, pressure, and displacement distributions on the discs to validate the model’s accuracy. The final model, composed of two functional units (L1-L3), exhibits a Range Of Motion in flexion consistent with experimental data reported in the literature and can therefore be considered reliable.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Bergamini_Tesi.pdf
non accessibile
Descrizione: Testo tesi
Dimensione
14.89 MB
Formato
Adobe PDF
|
14.89 MB | Adobe PDF | Visualizza/Apri |
2025_04_Bergamini_Executive_Summary.pdf
non accessibile
Descrizione: Testo executive summary
Dimensione
982.26 kB
Formato
Adobe PDF
|
982.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235873