Polymer Electrolyte Membrane Fuel Cells (PEMFC) are electrochemical devices capable of directly converting the chemical energy of hydrogen and oxygen into electricity and water. Although PEMFCs are considered to be a suitable solution for the decarbonization of the long-range heavy-duty transportation sector, their application is limited by durability, due to the dynamic nature of the conditions in which they have to operate. Developed in the frame of the PERMANENT Project, this MSc thesis focuses on investigating degradation of heavy-duty operation through Accelerated Stress Tests (ASTs) recently developed within the MRT Fuel Cell & Battery Lab. An initial sensitivity analysis of the main load profile degradation stressors was carried out. Four different AST profiles were implemented simultaneously to investigate the impact of potential thresholds and voltage transitions. The tested material showed great durability at the set standard working conditions for each of the performed tests. Hence, the effect of cell temperature on material degradation was analyzed, being this one of the more relevant parameters for heavy-duty application. The same type of material still showed good performance at harsher AST conditions, but revealed significant catalyst ECSA and performance loss at high operating temperatures. The bigger increase of transport resistance during ageing at higher AST cell temperature was probably caused by ionomer thin-film degradation in the catalyst layer. Two other commercial materials were tested, showing different cell ageing behavior: while one sample displayed no major dependence on test operating conditions, the other indicated that massive degradation phenomena developed at high AST cell temperature, such as carbon support corrosion. Lastly, a modeling activity was performed on the first material sample. After an intial model calibration was conducted to replicate polarization curves and limiting current measurements, material ageing was simulated by only employing the experimentally measured ECSA values. Since good agreement was found only with the test operated at lower temperature, confirming the crucial role of Pt catalyst degradation, proper result fitting was found once transport input parameters were modified, validating the analysis of ionomer degradation evinced from the experimental study.
Le celle a combustibile con membrana polimerica a scambio protonico (PEMFC) sono dispositivi elettrochimici in grado di convertire l’energia chimica di idrogeno e ossigeno in elettricità e acqua. Nonostante siano una soluzione promettente per la decarbonizzazione del settore dei trasporti pesanti, il loro uso è limitato dalla ridotta durabilità. Questa tesi magistrale si concentra sull’analisi del degrado delle celle a combustibile per trasporti pesanti attraverso test di degrado accelerati (ASTs), sviluppati recentemente presso il MRT Fuel Cell & Battery Lab sotto l’ambito del progetto PERMANENT. In una prima fase, è stata condotta un’analisi di sensibilità per analizzare i principali fattori di stress che influenzano il degrado. Sono quindi stati implementati quattro diversi profili AST per valutare l’impatto di specifiche soglie di tensione e di eventuali transizioni di potenziale. I test hanno mostrato un’ottima durabilità del materiale alle condizioni operative standard per ciascun AST. E’ poi stato analizzato l’effetto della temperatura di esercizio della cella sul degrado a lungo termine. Lo stesso tipo di materiale ha mantenuto buone prestazioni anche per condizioni di esercizio più critiche, ma ha mostrato una perdita importante di ECSA e di prestazioni a temperature operative elevate. L’aumento più marcato della resistenza al trasporto di massa osservato durante l’invecchiamento a temperature di AST più alte è stato attribuito alla degradazione dello ionomero nel catalyst layer. Sono stati testati altri due materiali commerciali: uno dei campioni non ha indicato una dipendenza significativa dalle condizioni operative del test, mentre l’altro ha presentato gravi fenomeni di degrado a temperature AST elevate, tra cui la corrosione del supporto in carbonio. Infine, è stata condotta un’attività modellistica sul degrado del primo materiale. Dopo una fase iniziale di calibrazione del modello, replicando le curve di polarizzazione e le prove di corrente limite, si è simulato l’invecchiamento utilizzando solamente i valori di ECSA misurati sperimentalmente. E’ stato ottenuto un buon fitting solamente per i dati del test condotto a bassa temperatura, confermando il ruolo fondamentale della degradazione del catalizzatore di Pt. E’ stato invece necessario modificare i parametri di trasporto di massa per riprodurre i test condotti a temperatura più elevata, confermando così l’analisi di degrado dello ionomero emersa dai risultati sperimentali.
Experimental and modeling analysis of cell temperature impact on PEM fuel cell catalyst layer degradation under real heavy-duty operating conditions
Cancian, Alessio
2023/2024
Abstract
Polymer Electrolyte Membrane Fuel Cells (PEMFC) are electrochemical devices capable of directly converting the chemical energy of hydrogen and oxygen into electricity and water. Although PEMFCs are considered to be a suitable solution for the decarbonization of the long-range heavy-duty transportation sector, their application is limited by durability, due to the dynamic nature of the conditions in which they have to operate. Developed in the frame of the PERMANENT Project, this MSc thesis focuses on investigating degradation of heavy-duty operation through Accelerated Stress Tests (ASTs) recently developed within the MRT Fuel Cell & Battery Lab. An initial sensitivity analysis of the main load profile degradation stressors was carried out. Four different AST profiles were implemented simultaneously to investigate the impact of potential thresholds and voltage transitions. The tested material showed great durability at the set standard working conditions for each of the performed tests. Hence, the effect of cell temperature on material degradation was analyzed, being this one of the more relevant parameters for heavy-duty application. The same type of material still showed good performance at harsher AST conditions, but revealed significant catalyst ECSA and performance loss at high operating temperatures. The bigger increase of transport resistance during ageing at higher AST cell temperature was probably caused by ionomer thin-film degradation in the catalyst layer. Two other commercial materials were tested, showing different cell ageing behavior: while one sample displayed no major dependence on test operating conditions, the other indicated that massive degradation phenomena developed at high AST cell temperature, such as carbon support corrosion. Lastly, a modeling activity was performed on the first material sample. After an intial model calibration was conducted to replicate polarization curves and limiting current measurements, material ageing was simulated by only employing the experimentally measured ECSA values. Since good agreement was found only with the test operated at lower temperature, confirming the crucial role of Pt catalyst degradation, proper result fitting was found once transport input parameters were modified, validating the analysis of ionomer degradation evinced from the experimental study.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Cancian_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
29.55 MB
Formato
Adobe PDF
|
29.55 MB | Adobe PDF | Visualizza/Apri |
2025_04_Cancian_Executive_Summary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235881