The rapid advancements in Artificial Intelligence (AI) are reshaping project management, introducing new opportunities for efficiency, decision-making, and strategic execution. This thesis explores the role of AI literacy in project management by assessing its impact on the core competencies required in both traditional and modern project environments. Specifically, it investigates how AI-driven tools and methodologies influence key aspects of project execution, including technical proficiency, strategic planning, and leadership dynamics. Using the Q-sort methodology, this research identifies four distinct competency perspectives among project managers: Technical Execution, Strategic Vision, Soft Skills, and AI Literacy. The study applies Exploratory Factor Analysis (EFA) to classify project managers based on their alignment with these perspectives and examines how AI adoption varies across these competency dimensions. Findings reveal that technical execution and strategic vision remain dominant in project management practices, while soft skills are increasingly recognized as critical for leadership and stakeholder engagement. However, AI literacy remains an emerging factor, with limited adoption among project managers, suggesting a gradual but inevitable shift towards AI-enhanced project management approaches. This research contributes to the existing body of knowledge by highlighting the interplay between AI literacy, traditional PM competencies, and evolving industry standards. It underscores the need for targeted AI training programs to bridge the gap between AI potential and its practical application in project management. For practitioners, the study provides insights into how AI can be integrated into existing PM frameworks to optimize efficiency without undermining essential human-centric leadership and decision-making skills.
I rapidi progressi nell’Intelligenza Artificiale (AI) stanno trasformando la gestione dei progetti, introducendo nuove opportunità per l’efficienza, il processo decisionale e l’esecuzione strategica. Questa tesi esplora il ruolo dell’alfabetizzazione all’AI nella gestione dei progetti, valutandone l’impatto sulle competenze chiave richieste sia negli ambienti di project management tradizionali che moderni. In particolare, si indaga su come gli strumenti e le metodologie basati sull’AI influenzino aspetti fondamentali dell’esecuzione del progetto, tra cui la competenza tecnica, la pianificazione strategica e le dinamiche di leadership. Utilizzando la metodologia Q-sort, questa ricerca identifica quattro prospettive di competenza tra i project manager: Esecuzione Tecnica, Visione Strategica, Competenze Soft e Alfabetizzazione all’AI. Lo studio applica l’Analisi Fattoriale Esplorativa (EFA) per classificare i project manager in base al loro allineamento con queste prospettive e analizza in che modo l’adozione dell’AI varia attraverso queste dimensioni di competenza. I risultati rivelano che l’esecuzione tecnica e la visione strategica rimangono dominanti nelle pratiche di gestione dei progetti, mentre le competenze trasversali (soft skills) sono sempre più riconosciute come fondamentali per la leadership e il coinvolgimento degli stakeholder. Tuttavia, l’alfabetizzazione all’AI è ancora un fattore emergente, con un’adozione limitata tra i project manager, suggerendo una transizione graduale ma inevitabile verso un approccio di gestione dei progetti migliorato dall’AI. Questa ricerca contribuisce alla letteratura esistente evidenziando l’interazione tra alfabetizzazione all’AI, competenze tradizionali di project management e standard di settore in evoluzione. Sottolinea la necessità di programmi di formazione mirati sull’AI per colmare il divario tra il potenziale dell’AI e la sua applicazione pratica nella gestione dei progetti. Per i professionisti del settore, lo studio fornisce spunti su come l’AI possa essere integrata nei framework esistenti per ottimizzare l’efficienza, senza compromettere le competenze essenziali legate alla leadership umana e al processo decisionale.
Bridging traditional project management and ai: the roles of traditional competencies, strategic alignment, and ai literacy in an exploratory q-sort analysis
BARTESAGHI, GABRIELE
2023/2024
Abstract
The rapid advancements in Artificial Intelligence (AI) are reshaping project management, introducing new opportunities for efficiency, decision-making, and strategic execution. This thesis explores the role of AI literacy in project management by assessing its impact on the core competencies required in both traditional and modern project environments. Specifically, it investigates how AI-driven tools and methodologies influence key aspects of project execution, including technical proficiency, strategic planning, and leadership dynamics. Using the Q-sort methodology, this research identifies four distinct competency perspectives among project managers: Technical Execution, Strategic Vision, Soft Skills, and AI Literacy. The study applies Exploratory Factor Analysis (EFA) to classify project managers based on their alignment with these perspectives and examines how AI adoption varies across these competency dimensions. Findings reveal that technical execution and strategic vision remain dominant in project management practices, while soft skills are increasingly recognized as critical for leadership and stakeholder engagement. However, AI literacy remains an emerging factor, with limited adoption among project managers, suggesting a gradual but inevitable shift towards AI-enhanced project management approaches. This research contributes to the existing body of knowledge by highlighting the interplay between AI literacy, traditional PM competencies, and evolving industry standards. It underscores the need for targeted AI training programs to bridge the gap between AI potential and its practical application in project management. For practitioners, the study provides insights into how AI can be integrated into existing PM frameworks to optimize efficiency without undermining essential human-centric leadership and decision-making skills.File | Dimensione | Formato | |
---|---|---|---|
Tesi_Bartesaghi_end.pdf
accessibile in internet per tutti
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235889