This study delves into the application of Artificial Intelligence Generated Content (AIGC) in clothing design services and explores how the construction of a data flywheel, driven by Product-Service System (PSS) design, can optimize clothing design, production, and marketing processes, enhancing efficiency, personalization, and market responsiveness. The research is set against the backdrop of the fashion industry undergoing a profound transformation from an "experience-driven" to a "data-driven" model, with AIGC technology offering new opportunities for this shift. The objective of the study is to investigate the effectiveness of AIGC technology in clothing design services, construct a theoretical framework for the data flywheel, integrate the PSS framework with AIGC technology, and innovate clothing design services. The research methods include literature review, case analysis, empirical research, theoretical framework construction, comparative studies, and comprehensive analysis. Key findings indicate that AIGC technology significantly enhances design efficiency and personalization. The data flywheel creates a self-reinforcing loop through continuous data collection and algorithm optimization. The PSS framework effectively integrates AIGC technology and the data flywheel, and the coupling innovation of the data flywheel model and service blueprint significantly improves service performance. The contribution of this study lies in providing both theoretical and practical guidance for the digital transformation of the clothing industry, promoting innovation and development in clothing design services, offering new ideas and methods for optimizing clothing design services, and contributing to the improvement of efficiency and personalization in clothing design. It provides an important reference for the digital transformation and sustainable development of the fashion industry.
La presente ricerca esamina in profondità l’applicazione dei contenuti generati da intelligenza artificiale (AIGC) nei servizi di design per l’abbigliamento e il modo in cui, attraverso la costruzione di un “data flywheel” guidato dalla progettazione di un Product-Service System (PSS), sia possibile ottimizzare i processi di design, produzione e marketing nell’industria della moda, incrementando efficienza, personalizzazione e reattività al mercato. L’analisi si inserisce nel contesto di una trasformazione radicale del settore, che sta passando da un approccio “experience-driven” a uno “data-driven”, in cui la tecnologia AIGC offre nuove opportunità. L’obiettivo della ricerca è valutare gli effetti derivanti dall’integrazione della tecnologia AIGC nei servizi di design per l’abbigliamento, sviluppare una cornice teorica sul data flywheel, integrare il framework PSS con l’AIGC e promuovere l’innovazione nei servizi di fashion design. Le metodologie adottate comprendono lo studio della letteratura, l’analisi di casi, la ricerca empirica, la costruzione di un modello teorico, lo studio comparativo e un’analisi sintetica. I risultati principali indicano che la tecnologia AIGC accresce in maniera significativa l’efficienza e il grado di personalizzazione del design, mentre il data flywheel – basato su un ciclo continuo di raccolta dati e ottimizzazione algoritmica – innesca un processo auto-rinforzante. Il framework PSS si dimostra efficace nell’integrare AIGC e data flywheel, e l’innovazione scaturita dal loro accoppiamento con il service blueprint migliora in modo rilevante le prestazioni dei servizi. Sul piano contributivo, lo studio fornisce un orientamento teorico e pratico per la trasformazione digitale dell’industria dell’abbigliamento, incoraggiando l’innovazione e l’evoluzione dei servizi di design. Inoltre, offre nuove prospettive e metodologie per ottimizzare tali servizi, incrementando efficienza e personalizzazione, e rappresenta un riferimento fondamentale per la trasformazione digitale e lo sviluppo sostenibile nel settore fashion.
Research on building the data flywheel driven by product-service system design : AIGC clothing design service
LI, HAOYU
2024/2025
Abstract
This study delves into the application of Artificial Intelligence Generated Content (AIGC) in clothing design services and explores how the construction of a data flywheel, driven by Product-Service System (PSS) design, can optimize clothing design, production, and marketing processes, enhancing efficiency, personalization, and market responsiveness. The research is set against the backdrop of the fashion industry undergoing a profound transformation from an "experience-driven" to a "data-driven" model, with AIGC technology offering new opportunities for this shift. The objective of the study is to investigate the effectiveness of AIGC technology in clothing design services, construct a theoretical framework for the data flywheel, integrate the PSS framework with AIGC technology, and innovate clothing design services. The research methods include literature review, case analysis, empirical research, theoretical framework construction, comparative studies, and comprehensive analysis. Key findings indicate that AIGC technology significantly enhances design efficiency and personalization. The data flywheel creates a self-reinforcing loop through continuous data collection and algorithm optimization. The PSS framework effectively integrates AIGC technology and the data flywheel, and the coupling innovation of the data flywheel model and service blueprint significantly improves service performance. The contribution of this study lies in providing both theoretical and practical guidance for the digital transformation of the clothing industry, promoting innovation and development in clothing design services, offering new ideas and methods for optimizing clothing design services, and contributing to the improvement of efficiency and personalization in clothing design. It provides an important reference for the digital transformation and sustainable development of the fashion industry.File | Dimensione | Formato | |
---|---|---|---|
2025_04_HAOYU LI_Thesis.pdf
accessibile in internet solo dagli utenti autorizzati
Dimensione
5.85 MB
Formato
Adobe PDF
|
5.85 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235904