Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic beta-cells, leading to dependence on exogenous insulin. Intrahepatic islet transplantation represents a promising therapy, but its clinical application is hindered by low engraftment efficiency and inadequate revascularization. This thesis explores the characterization of different bioink formulations generated by the Pancreas Bioengineering Unit of San Raffaele Hospital to ensure adequate properties for 3D printing application in the field of beta-cell replacement. The optimization process began with structural, rheological, and mechanical characterizations to identify the ideal bioink composition in terms of scaffold stability, extrusion-based bioprinting compatibility, controlled degradation kinetics, and mechanical properties resembling those of the native pancreas. Moreover, further rheological analysis and computational fluid dynamics simulations helped refine printing parameters, such as nozzle temperature and geometry, to improve shape fidelity and minimize shear stress on encapsulated cells. Using the optimized bioink formulation and printing parameters, cell-laden scaffolds were fabricated based on a previously customized CAD architecture. Biological assessments demonstrated that the scaffolds supported high viability and organization of human umbilical vein endothelial cells (HUVECs), promoting pre-vascularization. Additionally, dynamic insulin secretion tests confirmed that human islets (HIs) maintained their insulin secretion capacity post-encapsulation. Finally, preliminary in vivo studies in immunocompetent mice also revealed reduced fibrotic response toward acellular scaffolds, which is crucial for maintaining cell oxygenation. This work presents an innovative approach integrating biomaterial engineering, bioprinting, and cellular biology to enhance islet transplantation outcomes. Future research will focus on further optimizing scaffold-cell interactions, exploring alternative cell sources, exploiting bioreactor-based dynamic cell culture, and evaluating glycaemic regulation in preclinical diabetic models.
Il diabete di tipo 1 è una malattia autoimmune caratterizzata dalla distruzione delle cellule beta pancreatiche, che porta alla dipendenza dall’insulina esogena. Il trapianto intraepatico di isole è una terapia promettente, ma limitata da attecchimento inefficiente e rivascolarizzazione inadeguata. Questa tesi analizza varie formulazioni di bioinchiostro sviluppate dall’Unità di Bioingegneria del Pancreas dell’Ospedale San Raffaele, per garantire proprietà adeguate ad applicazioni di stampa 3D nella sostituzione delle cellule beta. L’ottimizzazione è iniziata con analisi strutturali, reologiche e meccaniche per individuare la composizione ideale in termini di stabilità dello scaffold, compatibilità con la biostampa a estrusione, cinetiche di degradazione controllate e proprietà meccaniche simili al pancreas nativo. Ulteriori analisi reologiche e simulazioni fluidodinamiche hanno perfezionato i parametri di stampa, come temperatura e geometria dell’ugello, migliorando la fedeltà di forma e riducendo gli sforzi di taglio sulle cellule incapsulate. Usando bioinchiostro e parametri ottimizzati, sono stati realizzati scaffold contenenti cellule sulla base di una struttura CAD personalizzata. Le analisi biologiche hanno dimostrato elevata vitalità e organizzazione delle cellule endoteliali, favorendo la pre-vascolarizzazione. Inoltre, i test dinamici di secrezione insulinica hanno confermato che le isole pancreatiche mantengono la capacità di secernere insulina dopo l’incapsulamento. Infine, studi preliminari in vivo su topi immunocompetenti hanno rivelato una ridotta risposta fibrotica verso scaffold acellulari, cruciale per non compromettere l’ossigenazione cellulare. Questo lavoro integra ingegneria dei biomateriali, biostampa e biologia cellulare per migliorare l’efficacia del trapianto di isole pancreatiche. Le ricerche future mirano a ottimizzare le interazioni tra scaffold e cellule, esplorare fonti cellulari alternative, impiegare bioreattori per colture dinamiche e valutare la regolazione glicemica in modelli preclinici diabetici.
Characterization of a bioink for 3D printing application in beta-cell replacement
Raineri, Silvia
2023/2024
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic beta-cells, leading to dependence on exogenous insulin. Intrahepatic islet transplantation represents a promising therapy, but its clinical application is hindered by low engraftment efficiency and inadequate revascularization. This thesis explores the characterization of different bioink formulations generated by the Pancreas Bioengineering Unit of San Raffaele Hospital to ensure adequate properties for 3D printing application in the field of beta-cell replacement. The optimization process began with structural, rheological, and mechanical characterizations to identify the ideal bioink composition in terms of scaffold stability, extrusion-based bioprinting compatibility, controlled degradation kinetics, and mechanical properties resembling those of the native pancreas. Moreover, further rheological analysis and computational fluid dynamics simulations helped refine printing parameters, such as nozzle temperature and geometry, to improve shape fidelity and minimize shear stress on encapsulated cells. Using the optimized bioink formulation and printing parameters, cell-laden scaffolds were fabricated based on a previously customized CAD architecture. Biological assessments demonstrated that the scaffolds supported high viability and organization of human umbilical vein endothelial cells (HUVECs), promoting pre-vascularization. Additionally, dynamic insulin secretion tests confirmed that human islets (HIs) maintained their insulin secretion capacity post-encapsulation. Finally, preliminary in vivo studies in immunocompetent mice also revealed reduced fibrotic response toward acellular scaffolds, which is crucial for maintaining cell oxygenation. This work presents an innovative approach integrating biomaterial engineering, bioprinting, and cellular biology to enhance islet transplantation outcomes. Future research will focus on further optimizing scaffold-cell interactions, exploring alternative cell sources, exploiting bioreactor-based dynamic cell culture, and evaluating glycaemic regulation in preclinical diabetic models.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Raineri_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
5.9 MB
Formato
Adobe PDF
|
5.9 MB | Adobe PDF | Visualizza/Apri |
2025_04_Raineri_ExecutiveSummary.pdf
non accessibile
Descrizione: Executive summary
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235910