The oral route is the most common and least invasive way for drug administration. However, the limited absorption at the intestinal epithelium level often complicates the development of orally administered drugs. To prevent failures in clinical trials, developing in vitro models that accurately mimic intestinal physiology is crucial, ensuring reliable drug permeability measurements. Innovative in vitro models, including organoids, 3D scaffolds, and Organ-on-Chip (OoC) devices, are being developed. Various characterization techniques are employed to assess the ability of in vitro models to replicate the intestinal complexity, including immunofluorescence staining, permeability assays, and Trans-Epithelial Electrical Resistance (TEER) measurements. TEER quantifies tight junction formation: higher resistance indicates greater barrier tightness. This thesis develops and integrates a TEER measurement system into a gut-on-chip model, employing impedance spectroscopy and Ohm’s law-based techniques. First, electrode configuration and positioning were optimized, followed by the comparison between two-point and four-point impedance spectroscopy. All configurations were technically validated prior to biological experiment and TEER monitoring during epithelial barrier formation. TEER biological results were compared with permeability assays analyzed using a fluorescence microscope and a plate reader, with an optimized sample preparation protocol. This study advances TEER integration in organ-on-chip platforms, introducing real-time barrier monitoring and enhancing predictive power of microfluidic systems in drug absorption studies. Despite challenges in TEER quantification, the findings provide a strong foundation for improvements. Further advancements in circuit modeling, data analysis, and throughput will enhance reliability and applicability of the platform.
La via orale è il metodo più comune e meno invasivo per la somministrazione di farmaci; lo sviluppo di questi farmaci è tuttavia spesso ostacolato dal limitato assorbimento a livello dell’epitelio intestinale. Per ridurre i fallimenti nei trial clinici, sono stati creati modelli intestinali in vitro innovativi, come organoidi, scaffold 3D e Organs-on-Chip (OoC). Esistono varie tecniche di caratterizzazione della funionzionalità dei modelli in vitro tra le quali immunofluorescenza, saggi di permeabilità e misure della Resistenza Elettrica Trans-Epiteliale (TEER). In particolare, la TEER quantifica la formazione delle tight junctions e contatti cellula-cellula: resistenza maggiore significa maggior tenuta della barriera e migliore capacità nel discriminare farmaci potenzialmente assorbibili attraverso di essa. Questa tesi sviluppa e integra un sistema di misurazione della TEER in un modello di gut-on-chip, utilizzando sia tecniche di spettroscopia di impedenza che metodologie basate sulla legge di Ohm. Dopo l’ottimizzazione degli elettrodi, sono stati confrontate configurazioni a due e quattro punti per la misura di impedenza. Tutte le configurazioni sono state validate senza la presenza di cellule seminate su chip prima di monitorare la TEER durante la formazione della barriera intestinale. I risultati biologici sono stati confrontati con saggi di permeabilità eseguiti mediante microscopia a fluorescenza e lettore di fluorescenza, con un protocollo di prelievo e preparazione del campione ottimizzato. Questo studio migliora l’integrazione della TEER negli Organs-on-Chip, permettendo il monitoraggio in tempo reale della formazione della barriera e aumentando la predittività degli studi di assorbimento dei farmaci. Nonostante alcune difficoltà, i risultati offrono una base solida per futuri sviluppi. Miglioramenti nella modellizzazione circuitale, nell’analisi dei dati e nell’aumento del throughput renderanno il sistema più affidabile e applicabile nell’ambito dello sviluppo di farmaci.
Integration and optimization of a Transepithelial Electrical Resistance (TEER) measuring system in a gut-on-chip platform for pharmacological studies
Muscarella, Chiara
2023/2024
Abstract
The oral route is the most common and least invasive way for drug administration. However, the limited absorption at the intestinal epithelium level often complicates the development of orally administered drugs. To prevent failures in clinical trials, developing in vitro models that accurately mimic intestinal physiology is crucial, ensuring reliable drug permeability measurements. Innovative in vitro models, including organoids, 3D scaffolds, and Organ-on-Chip (OoC) devices, are being developed. Various characterization techniques are employed to assess the ability of in vitro models to replicate the intestinal complexity, including immunofluorescence staining, permeability assays, and Trans-Epithelial Electrical Resistance (TEER) measurements. TEER quantifies tight junction formation: higher resistance indicates greater barrier tightness. This thesis develops and integrates a TEER measurement system into a gut-on-chip model, employing impedance spectroscopy and Ohm’s law-based techniques. First, electrode configuration and positioning were optimized, followed by the comparison between two-point and four-point impedance spectroscopy. All configurations were technically validated prior to biological experiment and TEER monitoring during epithelial barrier formation. TEER biological results were compared with permeability assays analyzed using a fluorescence microscope and a plate reader, with an optimized sample preparation protocol. This study advances TEER integration in organ-on-chip platforms, introducing real-time barrier monitoring and enhancing predictive power of microfluidic systems in drug absorption studies. Despite challenges in TEER quantification, the findings provide a strong foundation for improvements. Further advancements in circuit modeling, data analysis, and throughput will enhance reliability and applicability of the platform.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Muscarella_Chiara_Thesis.pdf
non accessibile
Descrizione: Thesis
Dimensione
73.66 MB
Formato
Adobe PDF
|
73.66 MB | Adobe PDF | Visualizza/Apri |
2025_04_Muscarella_Chiara_Executive_Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
3.79 MB
Formato
Adobe PDF
|
3.79 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235928