Micro- and nanoplastics pose a significant environmental challenge due to their persistence and potential harmful effects on biological systems. This thesis explores the adsorption properties of specific pentapeptides onto nanoplastic particles (NPs) to clarify their binding mechanisms and assess their potential for effective environmental remediation. We utilized a combination of computational and experimental methods, employing Molecular Dynamics (MD) simulations to investigate peptide-NP interactions at the nanoscale. Key factors such as adsorption propensity and binding stability were evaluated and validated through computational molecular dynamic simulations and experiments using polystyrene-based model nanoparticles. Our findings indicate that peptide adsorption is mainly influenced by hydrophobic and electrostatic interactions. However, discrepancies were identified between the computational and experimental results, primarily due to variations in particle charge, salinity conditions, and peptide solubility. Additionally, challenges such as peptide insolubility and aggregation further complicated the analysis. Nevertheless, this study provides valuable insights into the design of bio-based materials for nanoplastic remediation and highlights the necessity for more advanced models that accurately reflect real environmental conditions. The findings contribute to the advancement of sustainable bio-inspired strategies for nanoplastic remediation, bridging the gap between molecular design and practical applications in the ongoing effort to combat environmental pollution.
Le micro e nanoplastiche rappresentano una sfida ambientale di crescente rilevanza, data la loro persistenza negli ecosistemi e i potenziali effetti dannosi sui sistemi biologici. Questa tesi indaga le proprietà di adsorbimento di specifici pentapeptidi su particelle nanoplastiche (NPs), con l'obiettivo di comprendere i meccanismi di interazione e valutarne il potenziale per applicazioni di bonifica ambientale. L’approccio adottato combina simulazioni di dinamica molecolare (MD) e analisi sperimentali su modelli di nanoparticelle di polistirene, al fine di esaminare parametri chiave come la propensione all’adsorbimento e la stabilità del legame, convalidati sia tramite simulazioni computazionali che attraverso esperimenti condotti su modelli di nanoparticelle di polistirene. I risultati indicano che l’adsorbimento dei peptidi è guidato principalmente da interazioni idrofobiche ed elettrostatiche. Tuttavia, sono state riscontrate discrepanze tra i dati computazionali e quelli sperimentali, attribuibili principalmente a differenze nella carica delle particelle, nelle condizioni di salinità e nella solubilità dei peptidi. Inoltre, problematiche legate all'insolubilità e all’aggregazione dei peptidi hanno ulteriormente complicato l’analisi. Nonostante queste difficoltà, lo studio fornisce informazioni preziose per la progettazione di materiali bio-ispirati per la rimozione delle nanoplastiche e sottolinea la necessità di sviluppare modelli più avanzati in grado di riprodurre fedelmente le condizioni ambientali reali. I risultati ottenuti contribuiscono al progresso di strategie sostenibili basate su biomateriali, colmando il divario tra progettazione molecolare e applicazioni pratiche nella lotta all'inquinamento ambientale.
Engineering peptide-based molecular baits for selective nanoplastic asdorption as a potential approach for bioremediation
Salomone, Chiara
2024/2025
Abstract
Micro- and nanoplastics pose a significant environmental challenge due to their persistence and potential harmful effects on biological systems. This thesis explores the adsorption properties of specific pentapeptides onto nanoplastic particles (NPs) to clarify their binding mechanisms and assess their potential for effective environmental remediation. We utilized a combination of computational and experimental methods, employing Molecular Dynamics (MD) simulations to investigate peptide-NP interactions at the nanoscale. Key factors such as adsorption propensity and binding stability were evaluated and validated through computational molecular dynamic simulations and experiments using polystyrene-based model nanoparticles. Our findings indicate that peptide adsorption is mainly influenced by hydrophobic and electrostatic interactions. However, discrepancies were identified between the computational and experimental results, primarily due to variations in particle charge, salinity conditions, and peptide solubility. Additionally, challenges such as peptide insolubility and aggregation further complicated the analysis. Nevertheless, this study provides valuable insights into the design of bio-based materials for nanoplastic remediation and highlights the necessity for more advanced models that accurately reflect real environmental conditions. The findings contribute to the advancement of sustainable bio-inspired strategies for nanoplastic remediation, bridging the gap between molecular design and practical applications in the ongoing effort to combat environmental pollution.File | Dimensione | Formato | |
---|---|---|---|
Executive_W_Salomone_corretto (1).pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri |
TESI_corretta (1).pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: testo della tesi
Dimensione
3.46 MB
Formato
Adobe PDF
|
3.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/235936