Pharmaceutical residues are increasingly detected in water sources worldwide, raising serious environmental and health concerns that conventional treatment methods often fail to address. High-pressure membranes have proven effective in removing a wide range of contaminants; however, the concentrated waste stream they produce introduces additional risks and costs. Advanced oxidation processes using ultraviolet irradiation offer a promising approach for breaking down persistent chemicals, but most studies have been limited to small-scale, batch experiments, restricting their application in large-scale continuous water treatment. Pharmaceutical residues are increasingly detected in water sources worldwide, raising serious environmental and health concerns that conventional treatment methods often fail to address. High-pressure membranes have proven effective in removing a wide range of contaminants; however, the concentrated waste stream they produce introduces additional risks and costs. Advanced oxidation processes using ultraviolet irradiation offer a promising approach for breaking down persistent chemicals, but most studies have been limited to small-scale, batch experiments, restricting their application in large-scale continuous water treatment. This study examines the integrated impact of membrane type (nanofiltration vs. reverse osmosis) and radiation type (ultraviolet vs. vacuum ultraviolet) on the removal of a cocktail of four widespread pharmaceuticals, specifically acetaminophen, caffeine, carbamazepine and sulfamethoxazole, from wastewater. The findings indicate that combining reverse osmosis with vacuum ultraviolet radiation (RO-VUV) delivers the best overall performance, achieving superior permeate quality while minimizing waste disposal requirements. In closed-circuit batch mode, only ACE was detected in the permeate at the end of treatment, with concentrations not exceeding 2.5 times its initial value. Regarding degradation efficiency, the system achieved approximately 81% removal of ACE and 90% of SMX. In contrast, CAF and CBZ were more resistant to VUV treatment, with lower degradation rates of about 37% and 41%, respectively. VUV irradiation effectively maintained stable feed quality throughout the recirculation process, with negligible concentration increments for SMX and ACE, while those for CAF and CBZ remained below seven times the initial feed concentration, despite the volume reduction due to the extraction of the permeate. Additionally, RO-VUV proves to be the most energy-efficient solution, with an EEO of 1.6 kWh per order for the overall pharmaceutical cocktail, making large-scale industrial applications more viable.
I residui farmaceutici vengono rilevati sempre più frequentemente nelle risorse idriche a livello globale, sollevando gravi preoccupazioni ambientali e sanitarie che i metodi di trattamento convenzionali spesso non riescono a risolvere. Le membrane ad alta pressione si sono dimostrate efficaci nella rimozione di un'ampia gamma di contaminanti; tuttavia, il flusso di scarto concentrato che producono introduce rischi e costi aggiuntivi. I processi avanzati di ossidazione basati sull'irradiazione ultravioletta offrono un approccio promettente per la degradazione dei composti persistenti, ma la maggior parte degli studi si è limitata a esperimenti su piccola scala e in batch, limitandone l’applicazione nei trattamenti idrici continui su larga scala. Questo studio esamina l’effetto sinergico del tipo di membrana (nanofiltrazione vs. osmosi inversa) e del tipo di radiazione (ultravioletto vs. ultravioletto-vuoto) nella rimozione di un cocktail di quattro farmaci ampiamente diffusi, specificamente acetaminofene, caffeina, carbamazepina e sulfametossazolo, dalle acque reflue, utilizzando un sistema su scala pilota. I risultati indicano che la combinazione di osmosi inversa e radiazione ultravioletta-vuoto offre le migliori prestazioni complessive, garantendo una qualità superiore del permeato e riducendo al minimo i requisiti di smaltimento dei rifiuti. In modalità batch a circuito chiuso, al termine del trattamento è stata rilevata nel permeato solo la presenza di ACE, con concentrazioni che non superavano 2,5 volte il valore iniziale. Per quanto riguarda l’efficienza di degradazione, il sistema ha raggiunto una rimozione di circa l’81% per ACE e del 90% per SMX. Al contrario, CAF e CBZ si sono dimostrati più resistenti al trattamento con VUV, con percentuali di degradazione inferiori, pari rispettivamente a circa il 37% e il 41%. L’irradiazione VUV si è rivelata efficace nel mantenere stabile la qualità dell’alimentazione durante il processo di ricircolo, con incrementi di concentrazione trascurabili per SMX e ACE, mentre per CAF e CBZ i valori sono rimasti inferiori a sette volte la concentrazione iniziale dell’alimentazione, nonostante la riduzione di volume dovuta all’estrazione del permeato. Inoltre, la combinazione RO-VUV si conferma la soluzione più efficiente dal punto di vista energetico, con un EEO pari a 1,6 kWh per ordine per l’intero cocktail farmaceutico, rendendo così più sostenibili le applicazioni industriali su larga scala.
Studying the integrated separation-degradation system to address pharmaceuticals in water bodies
Panigada, Christian
2023/2024
Abstract
Pharmaceutical residues are increasingly detected in water sources worldwide, raising serious environmental and health concerns that conventional treatment methods often fail to address. High-pressure membranes have proven effective in removing a wide range of contaminants; however, the concentrated waste stream they produce introduces additional risks and costs. Advanced oxidation processes using ultraviolet irradiation offer a promising approach for breaking down persistent chemicals, but most studies have been limited to small-scale, batch experiments, restricting their application in large-scale continuous water treatment. Pharmaceutical residues are increasingly detected in water sources worldwide, raising serious environmental and health concerns that conventional treatment methods often fail to address. High-pressure membranes have proven effective in removing a wide range of contaminants; however, the concentrated waste stream they produce introduces additional risks and costs. Advanced oxidation processes using ultraviolet irradiation offer a promising approach for breaking down persistent chemicals, but most studies have been limited to small-scale, batch experiments, restricting their application in large-scale continuous water treatment. This study examines the integrated impact of membrane type (nanofiltration vs. reverse osmosis) and radiation type (ultraviolet vs. vacuum ultraviolet) on the removal of a cocktail of four widespread pharmaceuticals, specifically acetaminophen, caffeine, carbamazepine and sulfamethoxazole, from wastewater. The findings indicate that combining reverse osmosis with vacuum ultraviolet radiation (RO-VUV) delivers the best overall performance, achieving superior permeate quality while minimizing waste disposal requirements. In closed-circuit batch mode, only ACE was detected in the permeate at the end of treatment, with concentrations not exceeding 2.5 times its initial value. Regarding degradation efficiency, the system achieved approximately 81% removal of ACE and 90% of SMX. In contrast, CAF and CBZ were more resistant to VUV treatment, with lower degradation rates of about 37% and 41%, respectively. VUV irradiation effectively maintained stable feed quality throughout the recirculation process, with negligible concentration increments for SMX and ACE, while those for CAF and CBZ remained below seven times the initial feed concentration, despite the volume reduction due to the extraction of the permeate. Additionally, RO-VUV proves to be the most energy-efficient solution, with an EEO of 1.6 kWh per order for the overall pharmaceutical cocktail, making large-scale industrial applications more viable.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Panigada.pdf
accessibile in internet per tutti a partire dal 13/03/2028
Descrizione: Testo tesi
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236005