Recent advancements in Additive Manufacturing (AM) have revolutionized biomedical engineering by enabling the precise fabrication of patient-specific implants and scaffolds with optimized porosity, mechanical strength, and bioactivity. Ceramic materials are gaining attention thanks to their biocompatibility and high hardness, but because of their brittleness an accurate evaluation of the mechanical properties is necessary to guarantee the safety of the devices. This study focuses on the in silico characterization of six different lattice scaffolds produced through vat-photopolymerization using zirconia (ZrO2) and hydroxyapatite (HAp), with the aim of evaluating their mechanical behavior under multiaxial loading conditions, namely compression, tension and shear loading. Using Finite Element Analysis (FEA), the elastic properties, fracture propagation, and macroscopic stress domains of these geometries were assessed and compared with experimental data. The dimensions of the printed structures’ beams were measured to obtain six additional geometries for both materials, in order to represent the geometrical errors introduced with the printing process. A morphological analysis was performed to determine porosity, trabecular thickness, and trabecular spacing, providing information on the structural fidelity of printed scaffolds compared to their designed counterparts. The findings underscore the critical interplay between scaffold design, material properties, and mechanical behavior, emphasizing the potential of additive manufacturing for producing patient-specific bone grafts. By optimizing lattice architectures and material compositions, this research contributes to the development of advanced biomimetic scaffolds that improve clinical outcomes in bone repair and regenerative medicine.
I recenti progressi nella Manifattura Additiva (AM) hanno rivoluzionato l'ingegneria biomedica, consentendo la fabbricazione precisa di impianti e scaffold personalizzabili, caratterizzati da porosità, resistenza meccanica, e bioattività ottimizzate. I materiali ceramici stanno acquisendo crescente attenzione grazie alla loro biocompatibilità ed elevata durezza; tuttavia, a causa della loro intrinseca fragilità, è necessaria una valutazione accurata delle proprietà meccaniche per garantire la sicurezza dei dispositivi. Il presente studio si concentra sulla caratterizzazione in silico di sei diverse strutture reticolari prodotte mediante stereolitografia, composte da zirconia (ZrO2) e idrossiapatite (HAp), con l'obiettivo di valutare il loro comportamento meccanico sotto condizioni di carico multiassiale, in particolare sotto compressione, trazione e taglio. Attraverso l'Analisi agli Elementi Finiti (FEA), sono state analizzate le proprietà elastiche, la propagazione della frattura e i domini di sollecitazione macroscopica di queste geometrie, confrontandoli con dati sperimentali. Le dimensioni delle trabecole delle strutture stampate sono state misurate per ottenere sei ulteriori geometrie per entrambi i materiali, in modo da rappresentare gli errori geometrici introdotti dal processo di stampa. È stata inoltre eseguita un'analisi morfologica per determinare la porosità, lo spessore trabecolare e la spaziatura trabecolare, fornendo informazioni sulla fedeltà strutturale degli scaffold stampati rispetto ai modelli progettati. I risultati evidenziano la complessa interazione tra progettazione dello scaffold, proprietà del materiale e comportamento meccanico, sottolineando il potenziale della manifattura additiva nella produzione di innesti ossei personalizzati. Ottimizzando le architetture reticolari e le composizioni dei materiali, questa ricerca contribuisce allo sviluppo di scaffold biomimetici avanzati, migliorando le prospettive cliniche nella riparazione ossea e nella medicina rigenerativa.
In silico characterization of 3D-printed zirconia and hydroxyapatite lattices under multiaxial loading
Laureys, Pieter
2023/2024
Abstract
Recent advancements in Additive Manufacturing (AM) have revolutionized biomedical engineering by enabling the precise fabrication of patient-specific implants and scaffolds with optimized porosity, mechanical strength, and bioactivity. Ceramic materials are gaining attention thanks to their biocompatibility and high hardness, but because of their brittleness an accurate evaluation of the mechanical properties is necessary to guarantee the safety of the devices. This study focuses on the in silico characterization of six different lattice scaffolds produced through vat-photopolymerization using zirconia (ZrO2) and hydroxyapatite (HAp), with the aim of evaluating their mechanical behavior under multiaxial loading conditions, namely compression, tension and shear loading. Using Finite Element Analysis (FEA), the elastic properties, fracture propagation, and macroscopic stress domains of these geometries were assessed and compared with experimental data. The dimensions of the printed structures’ beams were measured to obtain six additional geometries for both materials, in order to represent the geometrical errors introduced with the printing process. A morphological analysis was performed to determine porosity, trabecular thickness, and trabecular spacing, providing information on the structural fidelity of printed scaffolds compared to their designed counterparts. The findings underscore the critical interplay between scaffold design, material properties, and mechanical behavior, emphasizing the potential of additive manufacturing for producing patient-specific bone grafts. By optimizing lattice architectures and material compositions, this research contributes to the development of advanced biomimetic scaffolds that improve clinical outcomes in bone repair and regenerative medicine.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Laureys_Tesi.pdf
accessibile in internet per tutti
Dimensione
49.11 MB
Formato
Adobe PDF
|
49.11 MB | Adobe PDF | Visualizza/Apri |
2025_04_Laureys_ExecutiveSummary.pdf
accessibile in internet per tutti
Dimensione
5.09 MB
Formato
Adobe PDF
|
5.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236083