Acute ischemic stroke (AIS) is a leading cause of death worldwide. Mechanical thrombectomy (MT) has emerged as a possible treatment, exploiting the combined action of stent-retriever, which traps and holds the clot, and aspiration catheters, which exert suction on the clot. However, a crucial limitation of current stent retrievers is their restricted expansion capability in tortuous arteries, which can compromise treatment efficacy. To address this, a novel self-expanding stent retriever named CSF (Closed-cell Segmented Flexible), featuring a closed-cell design for enhanced flexibility and conformability, was developed at the Robotics Institute of Beihang University in China. This thesis focuses on the experimental investigation and numerical modeling of this innovative stent retriever, aiming to characterize its mechanical properties and validate its performance. The manufactured stent's dimensions were verified to update the 3D model in SolidWorks before beginning the numerical simulations. Subsequently, a structural characterization was conducted through experimental crush and tensile tests, which were used to verify in silico models. Using (BETA CAE Systems International AG, CH) and LS-DYNA (ANSYS, PA, USA) software, the material parameters of the Ni-Ti CSF stent were calibrated, and a comparative analysis was done employing a hexahedral mesh for solid elements and tubular elements for the beam model. These comparative analyses revealed that while both element models adequately reproduced the experimental force-displacement curves in crush tests, the solid model demonstrated superior accuracy in stress-strain analysis and tensile test simulations. Experimental crush tests proved ideal for testing the specimen under physiological conditions, providing valuable data for model validation, while tensile tests need more improvements. This research contributes to developing a methodology to validate the structure, material parameters, and mechanical performance of stent retrievers, ultimately aiding in the design of more effective devices for treating acute ischemic stroke and improving patient outcomes.
L'ictus ischemico acuto (AIS) è una delle principali cause di morte in tutto il mondo. La trombectomia meccanica (MT) è emersa come un possibile trattamento che combina l'azione di stent-retriever, per intrappolare il trombo, e di cateteri di aspirazione che esercitano una forza di risucchio sul trombo. Tuttavia, una limitazione degli stent retriever attuali è la loro limitata capacità di espansione nelle arterie tortuose, il che può compromettere l'efficacia del trattamento. Per affrontare questo problema, è stato sviluppato presso l'Istituto di Robotica dell'Università di Beihang in Cina un nuovo stent retriever autoespandibile chiamato CSF (Closed-cell Segmented Flexible), caratterizzato da un design a celle chiuse per una maggiore flessibilità e conformabilità. Questa tesi si concentra sull'indagine sperimentale e sulla modellazione numerica di questo stent retriever, con l'obiettivo di caratterizzarne le proprietà meccaniche. Prima di iniziare le simulazioni numeriche, le dimensioni dello stent fabbricato sono state verificate per aggiornare il modello 3D in SolidWorks. Successivamente, è stata condotta una caratterizzazione strutturale mediante test sperimentali di schiacciamento e trazione, utilizzati per verificare i modelli in silico. Utilizzando i software ANSA (BETA CAE Systems International AG, CH) e LS-DYNA (ANSYS, PA, USA), sono stati calibrati i parametri del materiale dello stent CSF in Ni-Ti ed è stata eseguita un'analisi comparativa impiegando una mesh esaedrica per gli elementi solidi e elementi tubolari per il modello beam. Queste analisi comparative hanno rivelato che, sebbene entrambi i modelli di elementi riproducessero adeguatamente le curve forza-spostamento sperimentali nei test di schiacciamento, il modello solido ha dimostrato una maggiore accuratezza nell'analisi sforzo-deformazione e nelle simulazioni dei test di trazione. I test sperimentali di schiacciamento si sono dimostrati ideali per testare il campione in condizioni fisiologiche, fornendo dati preziosi per la validazione del modello, mentre i test di trazione necessitano di ulteriori miglioramenti. Questa ricerca contribuisce allo sviluppo di una metodologia per convalidare la struttura, i parametri del materiale e le prestazioni meccaniche degli stent retriever, aiutando in ultima analisi la progettazione di dispositivi più efficaci per il trattamento dell'AIS.
Experimental characterization and finite element analysis of a novel stent retriever prototype for mechanical thrombectomy
QUARTIERI, VALENTINA
2023/2024
Abstract
Acute ischemic stroke (AIS) is a leading cause of death worldwide. Mechanical thrombectomy (MT) has emerged as a possible treatment, exploiting the combined action of stent-retriever, which traps and holds the clot, and aspiration catheters, which exert suction on the clot. However, a crucial limitation of current stent retrievers is their restricted expansion capability in tortuous arteries, which can compromise treatment efficacy. To address this, a novel self-expanding stent retriever named CSF (Closed-cell Segmented Flexible), featuring a closed-cell design for enhanced flexibility and conformability, was developed at the Robotics Institute of Beihang University in China. This thesis focuses on the experimental investigation and numerical modeling of this innovative stent retriever, aiming to characterize its mechanical properties and validate its performance. The manufactured stent's dimensions were verified to update the 3D model in SolidWorks before beginning the numerical simulations. Subsequently, a structural characterization was conducted through experimental crush and tensile tests, which were used to verify in silico models. Using (BETA CAE Systems International AG, CH) and LS-DYNA (ANSYS, PA, USA) software, the material parameters of the Ni-Ti CSF stent were calibrated, and a comparative analysis was done employing a hexahedral mesh for solid elements and tubular elements for the beam model. These comparative analyses revealed that while both element models adequately reproduced the experimental force-displacement curves in crush tests, the solid model demonstrated superior accuracy in stress-strain analysis and tensile test simulations. Experimental crush tests proved ideal for testing the specimen under physiological conditions, providing valuable data for model validation, while tensile tests need more improvements. This research contributes to developing a methodology to validate the structure, material parameters, and mechanical performance of stent retrievers, ultimately aiding in the design of more effective devices for treating acute ischemic stroke and improving patient outcomes.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Quartieri_Thesis.pdf
non accessibile
Descrizione: 2025_04_Quartieri_Thesis
Dimensione
57.4 MB
Formato
Adobe PDF
|
57.4 MB | Adobe PDF | Visualizza/Apri |
2025_04_Quartieri_Executive_Summary.pdf
non accessibile
Descrizione: 2025_04_Quartieri_Executive_Summary
Dimensione
6.01 MB
Formato
Adobe PDF
|
6.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236087