Through innovative parametric design techniques, this thesis explores the optimization of beam-string structures, a category of lightweight, efficient systems well-suited for large-span applications. The study develops a strong parametric model that facilitates the iterative refinement of design parameters by incorporating advanced computational tools within a Grasshopper-Rhino environment. The research systematically addresses serviceability and ultimate limit state design conditions by utilizing advanced tools such as Karamba3D for finite element analysis, Galapagos for single-objective optimization, and Opossum for multi-objective approaches. Detailed case studies illustrate improvements in material efficiency, displacement control, and overall structural performance while emphasizing the balance between architectural aesthetics and engineering functionality. The findings affirm the potential of parametric optimization in achieving cost-effective and sustainable beam-string structures and establish a foundation for future advancements in computational structural design. In addition to the optimization, it provides a broad overview of the study and application of beam string structures.
Attraverso innovative tecniche di progettazione parametrica, questa tesi esplora l'ottimizzazione delle strutture Beam-string, una tipologia di sistemi leggeri ed efficienti particolarmente adatti alle applicazioni a grande luce. Lo studio sviluppa un modello parametrico avanzato che consente il raffinamento iterativo dei parametri progettuali, integrando strumenti computazionali all'interno dell'ambiente Grasshopper-Rhino. La ricerca affronta in modo sistematico le condizioni di esercizio e di stato limite ultimo, avvalendosi di strumenti avanzati come Karamba3D per l'analisi agli elementi finiti, Galapagos per l'ottimizzazione a singolo obiettivo e Opossum per approcci multi-obiettivo. Attraverso casi studio dettagliati, vengono analizzati i miglioramenti in termini di efficienza dei materiali, controllo degli spostamenti e prestazioni strutturali complessive, ponendo particolare attenzione all'equilibrio tra estetica architettonica e funzionalità ingegneristica. I risultati confermano il potenziale dell'ottimizzazione parametrica nel raggiungere soluzioni strutturali trave-cavo economicamente vantaggiose e sostenibili, fornendo una base solida per futuri sviluppi nella progettazione strutturale computazionale. Oltre all'ottimizzazione, il lavoro offre una panoramica approfondita sullo studio e sull'applicazione delle strutture Beam string.
Optimization of beam-string structure through innovative parametric design
Antonyan, Narek
2024/2025
Abstract
Through innovative parametric design techniques, this thesis explores the optimization of beam-string structures, a category of lightweight, efficient systems well-suited for large-span applications. The study develops a strong parametric model that facilitates the iterative refinement of design parameters by incorporating advanced computational tools within a Grasshopper-Rhino environment. The research systematically addresses serviceability and ultimate limit state design conditions by utilizing advanced tools such as Karamba3D for finite element analysis, Galapagos for single-objective optimization, and Opossum for multi-objective approaches. Detailed case studies illustrate improvements in material efficiency, displacement control, and overall structural performance while emphasizing the balance between architectural aesthetics and engineering functionality. The findings affirm the potential of parametric optimization in achieving cost-effective and sustainable beam-string structures and establish a foundation for future advancements in computational structural design. In addition to the optimization, it provides a broad overview of the study and application of beam string structures.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025_04_Antonyan.pdf
non accessibile
Descrizione: Through innovative parametric design techniques, this thesis explores the optimization of beam-string structures, a category of lightweight, efficient systems well-suited for large-span applications. The study develops a strong parametric model that facilitates the iterative refinement of design parameters by incorporating advanced computational tools within a Grasshopper-Rhino environment. The research systematically addresses serviceability and ultimate limit state design conditions by utilizing advanced tools such as Karamba3D for finite element analysis, Galapagos for single-objective optimization, and Opossum for multi-objective approaches. Detailed case studies illustrate improvements in material efficiency, displacement control, and overall structural performance while emphasizing the balance between architectural aesthetics and engineering functionality. The findings affirm the potential of parametric optimization in achieving cost-effective and sustainable beam-string structures and establish a foundation for future advancements in computational structural design. In addition to the optimization, it provides a broad overview of the study and application of beam string structures.
Dimensione
11.53 MB
Formato
Adobe PDF
|
11.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236153