Global water resources are increasingly pressured by rising energy demands and complex water governance challenges. As climate patterns evolve and societal needs grow, balancing water availability for both human development and ecological sustainability has become an ever more pressing issue. The Zambezi River Basin (ZRB) is a key example of these complexities, where competing demands for water, energy, and environmental preservation intersect. As one of the principal water systems in south-central Africa, it plays a crucial role in the region’s economic and energy development. To address growing electricity demands, several new hydropower projects are under consideration, including the Mphanda Nkuwa Dam in Mozambique, positioning hydropower as a central strategy for energy security. However, while the benefits of hydropower are well recognized, its impact on sediment dynamics remains largely unstudied. Reservoirs alter natural sediment transport, with potential consequences for river morphology and downstream ecosystems. Despite the planned expansion of hydropower infrastructure in the ZRB, there is a critical gap in assessing how these developments influence sediment flow. Addressing this issue is essential to ensuring sustainable river management and minimizing long-term environmental risks. In this study, we developed a modeling framework capable of capturing basin-scale sediment connectivity, assessing the cumulative effects of existing dams and those under planning. For this purpose, we employed D-CASCADE, a dynamic sediment routing model that allows a representation of temporal evolution in erosion, transport, and deposition processes across the river network. After collecting all the required data for setting up the model, we defined plausible scenarios of sediment budget inizialization by leveraging the model itself This approach allows us to account for the limited available data on suspended sediment and grain size distributions measured at selected locations. As a result, we obtained 694 acceptable scenarios of initial sediment budget, each characterized by a unique combination of sediment load values and grain size distributions. These scenarios are then used to simulate two dam configurations: the current state, which includes the large Cahora Bassa Dam, and a future scenario that incorporates three new planned dams(Batoka Gorge, Devils Gorge, and Mphanda Nkuwa). Results show that Cahora Bassa alone reduces sediment loads at the outlet section of our model (Tete) by about 35.5 % (median value), aligning with previous studies that estimated a reduction between 30 % and 40 %. The addition of the new dams brings a further approximate 16 % decrease in sediment loads at Tete. However, the majority of the overall impact still derives from Cahora Bassa, given its large storage capacity. Additionally, we observed that Batoka Gorge and Devils Gorge, located upstream of Lake Kariba, would help mitigate sedimentation within the Kariba Basin, reducing the volume deposited in the reservoir by approximately about 35–40 %. Finally, we analyzed the sedimentation rate for the three new planned reservoirs, finding that none of them will face significant risks associated with this dynamic. Overall, D-CASCADE’s ability to provide multiple outputs, despite substantial uncertainty due to limited data, is fundamentally important for studying sediment connectivity at large scales. Its conceptual approach, less computationally intensive, is an important advantage, allowing the model to be easily refined as more detailed sediment-concentration data on the Zambezi River become available.
Le risorse idriche globali sono sempre più sotto pressione a causa dell’aumento della domanda di energia e delle complesse sfide legate alla governance dell’acqua. Con l’evolversi dei modelli climatici e la crescita delle esigenze sociali, bilanciare la disponibilità d’acqua per lo sviluppo umano e la sostenibilità ecologica è diventato un problema sempre più urgente. Il bacino del fiume Zambesi (ZRB) ne è un esempio emblematico, dove le esigenze conflittuali di acqua, energia e conservazione ambientale si intersecano. Come uno dei principali sistemi idrici dell’Africa centro-meridionale, svolge un ruolo cruciale nello sviluppo economico ed energetico della regione. Per soddisfare la crescente domanda di elettricità, sono in fase di valutazione diversi nuovi progetti idroelettrici, tra cui la diga di Mphanda Nkuwa in Mozambico, ponendo l’energia idroelettrica al centro delle strategie per la sicurezza energetica. Tuttavia, sebbene i benefici dell’energia idroelettrica siano ben noti, il suo impatto sulla dinamica dei sedimenti rimane in gran parte inesplorato. I bacini artificiali modificano infatti il trasporto naturale dei sedimenti, con possibili ripercussioni sulla morfologia fluviale e sugli ecosistemi a valle. Nonostante l’espansione pianificata delle infrastrutture idroelettriche nel ZRB, manca ancora una valutazione approfondita di come questi sviluppi influiscano sul trasporto dei sedimenti. Affrontare questa carenza è fondamentale per garantire una gestione sostenibile del fiume e per minimizzare i rischi ambientali a lungo termine. In questo studio abbiamo sviluppato un modello in grado di rappresentare la connettività dei sedimenti su scala di bacino, valutando gli effetti cumulativi sia delle dighe esistenti sia di quelle in programma. A tal fine, abbiamo utilizzato D-CASCADE, un modello dinamico di routing dei sedimenti che consente di descrivere l’evoluzione temporale dei processi di erosione, trasporto e deposito all’interno della rete fluviale. Dopo aver raccolto tutti i dati necessari all’impostazione del modello, abbiamo definito scenari plausibili per l’inizializzazione del bilancio dei sedimenti sfruttando lo stesso modello. Questo approccio ci ha permesso di tener conto della disponibilità limitata di dati relativi ai sedimenti in sospensione e alle distribuzioni granulometriche, disponibili solo in alcune località selezionate. Ne abbiamo così ricavato 694 scenari “accettabili” di bilancio sedimentario iniziale, ciascuno caratterizzato da una combinazione unica di valori di carico solido e di distribuzioni granulometriche. Questi scenari sono poi serviti per simulare due configurazioni di dighe: lo stato attuale, che comprende la grande diga di Cahora Bassa, e uno scenario futuro che prevede tre nuove dighe (Batoka Gorge, Devils Gorge e Mphanda Nkuwa). I risultati mostrano che la sola diga di Cahora Bassa riduce i carichi di sedimenti alla sezione di uscita del nostro modello (Tete) di circa il 35,5 % (valore mediano), in linea con studi precedenti che avevano stimato una riduzione compresa tra il 30 % e il 40 %. L’aggiunta delle nuove dighe comporta un’ulteriore riduzione di circa il 16 % dei carichi di sedimenti a Tete. Tuttavia, la gran parte dell’impatto complessivo rimane attribuibile a Cahora Bassa, data la sua ampia capacità di invaso. Inoltre, è emerso che Batoka Gorge e Devils Gorge, situate a monte del lago Kariba, contribuirebbero a mitigare la sedimentazione all’interno del bacino di Kariba, riducendo il volume depositato nel serbatoio di circa il 35–40 %. Infine, l’analisi del tasso di sedimentazione nei tre nuovi invasi previsti ha rivelato che nessuno di essi sarà esposto a rischi significativi derivanti da questa dinamica. In definitiva, la capacità di D-CASCADE di fornire una vasta gamma di risultati, pur in presenza di significative incertezze dovute ai dati limitati, è di importanza cruciale per lo studio della connettività dei sedimenti su larga scala. Il suo approccio concettuale, meno oneroso dal punto di vista computazionale, offre un importante vantaggio consentendo di perfezionare agevolmente il modello man mano che diventino disponibili dati più precisi sulle concentrazioni di sedimenti nel fiume Zambesi.
Exploring spatiotemporal dynamics of sediment transport in the Zambezi river basin
Marchesi, Davide
2023/2024
Abstract
Global water resources are increasingly pressured by rising energy demands and complex water governance challenges. As climate patterns evolve and societal needs grow, balancing water availability for both human development and ecological sustainability has become an ever more pressing issue. The Zambezi River Basin (ZRB) is a key example of these complexities, where competing demands for water, energy, and environmental preservation intersect. As one of the principal water systems in south-central Africa, it plays a crucial role in the region’s economic and energy development. To address growing electricity demands, several new hydropower projects are under consideration, including the Mphanda Nkuwa Dam in Mozambique, positioning hydropower as a central strategy for energy security. However, while the benefits of hydropower are well recognized, its impact on sediment dynamics remains largely unstudied. Reservoirs alter natural sediment transport, with potential consequences for river morphology and downstream ecosystems. Despite the planned expansion of hydropower infrastructure in the ZRB, there is a critical gap in assessing how these developments influence sediment flow. Addressing this issue is essential to ensuring sustainable river management and minimizing long-term environmental risks. In this study, we developed a modeling framework capable of capturing basin-scale sediment connectivity, assessing the cumulative effects of existing dams and those under planning. For this purpose, we employed D-CASCADE, a dynamic sediment routing model that allows a representation of temporal evolution in erosion, transport, and deposition processes across the river network. After collecting all the required data for setting up the model, we defined plausible scenarios of sediment budget inizialization by leveraging the model itself This approach allows us to account for the limited available data on suspended sediment and grain size distributions measured at selected locations. As a result, we obtained 694 acceptable scenarios of initial sediment budget, each characterized by a unique combination of sediment load values and grain size distributions. These scenarios are then used to simulate two dam configurations: the current state, which includes the large Cahora Bassa Dam, and a future scenario that incorporates three new planned dams(Batoka Gorge, Devils Gorge, and Mphanda Nkuwa). Results show that Cahora Bassa alone reduces sediment loads at the outlet section of our model (Tete) by about 35.5 % (median value), aligning with previous studies that estimated a reduction between 30 % and 40 %. The addition of the new dams brings a further approximate 16 % decrease in sediment loads at Tete. However, the majority of the overall impact still derives from Cahora Bassa, given its large storage capacity. Additionally, we observed that Batoka Gorge and Devils Gorge, located upstream of Lake Kariba, would help mitigate sedimentation within the Kariba Basin, reducing the volume deposited in the reservoir by approximately about 35–40 %. Finally, we analyzed the sedimentation rate for the three new planned reservoirs, finding that none of them will face significant risks associated with this dynamic. Overall, D-CASCADE’s ability to provide multiple outputs, despite substantial uncertainty due to limited data, is fundamentally important for studying sediment connectivity at large scales. Its conceptual approach, less computationally intensive, is an important advantage, allowing the model to be easily refined as more detailed sediment-concentration data on the Zambezi River become available.File | Dimensione | Formato | |
---|---|---|---|
2025_4_Marchesi.pdf
accessibile in internet per tutti a partire dal 12/03/2026
Descrizione: The thesis investigates sediment transport in the Zambezi River Basin, focusing on the effects of existing and planned dams. A dynamic sediment routing model called D-CASCADE is developed, capturing basin-scale sediment connectivity under scarce monitoring data. After collecting and analyzing hydrological information, 694 plausible sediment budget scenarios were generated, reflecting varying loads and grain-size distributions. Simulations indicate that Cahora Bassa Dam alone reduces downstream sediment transport by about 35.5%. Adding three proposed dams further decreases sediment load by around 16%. These findings underscore D-CASCADE’s usefulness in large-scale analyses and highlight the need for improved data to significantly refine modeling results.
Dimensione
15.5 MB
Formato
Adobe PDF
|
15.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236159