The development of unconventional aircraft configurations presents significant challenges in flight mechanics modeling. Traditional empirical models often fail to capture the aerodynamic interactions of innovative designs, while high-fidelity Computational Fluid Dynamics (CFD) simulations demand extensive computational resources, limiting their feasibility for early-stage design. This thesis proposes a structured methodology to develop a flight mechanics model for a fixed-wing drone with a three-surface configuration using semi-empirical methods. To validate the proposed methodology, the Dragonfly DS-1, an electric Vertical Take-Off and Landing (VTOL) UAV developed by Overspace Aviation, is used as the reference aircraft. The approach integrates sequential analyses using the USAF Digital Datcom, adapted to account for the three-surface configuration. The aerodynamic model is assessed through comparative analysis with CFD simulations and flight test data, evaluating its potential in predicting aerodynamic coefficients and stability derivatives. To enhance the accuracy of the results, calibration methodologies are introduced, allowing adjustments to the semi-empirical model. The study aims to explore the applicability and limitations of the proposed method, offering insights into its feasibility for preliminary aircraft design.

Lo sviluppo di configurazioni aeronautiche non convenzionali pone sfide significative nella modellazione della meccanica del volo. I modelli empirici tradizionali spesso non riescono a catturare le interazioni aerodinamiche di progetti innovativi, mentre le simulazioni CFD (Computational Fluid Dynamics) ad alta fedeltà richiedono risorse computazionali ingenti, rendendone difficile l'impiego nelle prime fasi di progettazione. Questa tesi propone una metodologia strutturata per lo sviluppo di un modello di meccanica del volo per un drone ad ala fissa con configurazione a tre superfici, utilizzando metodi semi-empirici. Per validare la metodologia proposta, il Dragonfly DS-1, un UAV elettrico a decollo e atterraggio verticale (VTOL) sviluppato da Overspace Aviation, è utilizzato come velivolo di riferimento. L'approccio integra analisi sequenziali basate sull’USAF Digital Datcom, adattato per considerare la configurazione a tre superfici. Il modello aerodinamico viene analizzato attraverso un confronto con simulazioni CFD e dati sperimentali di volo, valutandone il potenziale nella previsione dei coefficienti aerodinamici e delle derivate di stabilità. Per migliorare l’accuratezza dei risultati, vengono introdotte metodologie di calibrazione del modello, consentendo di affinare le stime. Lo studio si propone di esplorare l’applicabilità e i limiti del metodo proposto, fornendo spunti sulla sua fattibilità per la progettazione preliminare di aeromobili.

A procedure to develop a flight mechanics model of a fixed-wing drone in unusual configuration using semi-empirical methods

Testa, Laura
2024/2025

Abstract

The development of unconventional aircraft configurations presents significant challenges in flight mechanics modeling. Traditional empirical models often fail to capture the aerodynamic interactions of innovative designs, while high-fidelity Computational Fluid Dynamics (CFD) simulations demand extensive computational resources, limiting their feasibility for early-stage design. This thesis proposes a structured methodology to develop a flight mechanics model for a fixed-wing drone with a three-surface configuration using semi-empirical methods. To validate the proposed methodology, the Dragonfly DS-1, an electric Vertical Take-Off and Landing (VTOL) UAV developed by Overspace Aviation, is used as the reference aircraft. The approach integrates sequential analyses using the USAF Digital Datcom, adapted to account for the three-surface configuration. The aerodynamic model is assessed through comparative analysis with CFD simulations and flight test data, evaluating its potential in predicting aerodynamic coefficients and stability derivatives. To enhance the accuracy of the results, calibration methodologies are introduced, allowing adjustments to the semi-empirical model. The study aims to explore the applicability and limitations of the proposed method, offering insights into its feasibility for preliminary aircraft design.
ING - Scuola di Ingegneria Industriale e dell'Informazione
3-apr-2025
2024/2025
Lo sviluppo di configurazioni aeronautiche non convenzionali pone sfide significative nella modellazione della meccanica del volo. I modelli empirici tradizionali spesso non riescono a catturare le interazioni aerodinamiche di progetti innovativi, mentre le simulazioni CFD (Computational Fluid Dynamics) ad alta fedeltà richiedono risorse computazionali ingenti, rendendone difficile l'impiego nelle prime fasi di progettazione. Questa tesi propone una metodologia strutturata per lo sviluppo di un modello di meccanica del volo per un drone ad ala fissa con configurazione a tre superfici, utilizzando metodi semi-empirici. Per validare la metodologia proposta, il Dragonfly DS-1, un UAV elettrico a decollo e atterraggio verticale (VTOL) sviluppato da Overspace Aviation, è utilizzato come velivolo di riferimento. L'approccio integra analisi sequenziali basate sull’USAF Digital Datcom, adattato per considerare la configurazione a tre superfici. Il modello aerodinamico viene analizzato attraverso un confronto con simulazioni CFD e dati sperimentali di volo, valutandone il potenziale nella previsione dei coefficienti aerodinamici e delle derivate di stabilità. Per migliorare l’accuratezza dei risultati, vengono introdotte metodologie di calibrazione del modello, consentendo di affinare le stime. Lo studio si propone di esplorare l’applicabilità e i limiti del metodo proposto, fornendo spunti sulla sua fattibilità per la progettazione preliminare di aeromobili.
File allegati
File Dimensione Formato  
2025_04_Testa_Executive_Summary.pdf

solo utenti autorizzati a partire dal 13/03/2026

Descrizione: Executive Summary
Dimensione 14.36 MB
Formato Adobe PDF
14.36 MB Adobe PDF   Visualizza/Apri
2025_04_Testa_Tesi.pdf

solo utenti autorizzati a partire dal 13/03/2026

Descrizione: Tesi
Dimensione 37.45 MB
Formato Adobe PDF
37.45 MB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/236192