This thesis investigates the transformative role of Artificial Intelligence (AI) within Corporate Performance Management (CPM), emphasizing its influence on strategic decision-making processes. The study aims to understand how AI-driven technologies reshape traditional CPM frameworks, enabling more precise strategic planning, improved operational efficiency, and enhanced forecasting accuracy. Employing a qualitative analysis of multiple case studies across diverse industries, this research explores AI's integration into financial functions, performance assessment, risk management, and strategy alignment. Findings illustrate significant benefits, such as enhanced decision-making capabilities and greater agility in responding to market changes, alongside notable implementation challenges including data quality concerns, organizational preparedness, and ethical considerations. The study highlights critical success factors for AI adoption, emphasizing data integrity, organizational alignment, and effective governance structures. Ultimately, this thesis provides organizations with a structured, strategic framework for successfully integrating AI into CPM, offering practical guidance to leverage its potential while addressing inherent risks.
Questa tesi esplora l’impatto dell’Intelligenza Artificiale (AI) nel Corporate Performance Management (CPM), concentrandosi in particolare sui processi decisionali aziendali. Lo studio analizza come le tecnologie AI stiano modificando i tradizionali modelli di gestione delle performance aziendali, rendendo più accurata la pianificazione strategica, migliorando l’efficienza operativa e aumentando la precisione delle previsioni finanziarie. Attraverso l’analisi qualitativa di casi studio appartenenti a settori diversi, la ricerca esamina l'integrazione dell’AI nelle funzioni finanziarie, nella valutazione delle performance, nella gestione del rischio e nell’allineamento strategico. I risultati mostrano benefici significativi, tra cui capacità decisionali potenziate e maggiore tempestività nell'identificare e affrontare cambiamenti e incertezze. Tuttavia, emergono anche sfide rilevanti, come la qualità dei dati, la necessità di competenze tecniche specifiche e considerazioni etiche nell’utilizzo degli algoritmi.
Enhancing corporate performance management through Artificial Intelligence: empirical evidence
Ghilardi, Giovanni;Granchi, Francesco
2024/2025
Abstract
This thesis investigates the transformative role of Artificial Intelligence (AI) within Corporate Performance Management (CPM), emphasizing its influence on strategic decision-making processes. The study aims to understand how AI-driven technologies reshape traditional CPM frameworks, enabling more precise strategic planning, improved operational efficiency, and enhanced forecasting accuracy. Employing a qualitative analysis of multiple case studies across diverse industries, this research explores AI's integration into financial functions, performance assessment, risk management, and strategy alignment. Findings illustrate significant benefits, such as enhanced decision-making capabilities and greater agility in responding to market changes, alongside notable implementation challenges including data quality concerns, organizational preparedness, and ethical considerations. The study highlights critical success factors for AI adoption, emphasizing data integrity, organizational alignment, and effective governance structures. Ultimately, this thesis provides organizations with a structured, strategic framework for successfully integrating AI into CPM, offering practical guidance to leverage its potential while addressing inherent risks.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Ghilardi_Granchi_Tesi_01.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
3.89 MB
Formato
Adobe PDF
|
3.89 MB | Adobe PDF | Visualizza/Apri |
2025_04_Ghilardi_Granchi_Executive Summary_02.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Executive Summary
Dimensione
358.81 kB
Formato
Adobe PDF
|
358.81 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236233