Energy communities (ECs) are expected to play an essential role in the energy transition by facilitating the diffusion of renewable-based energy resources. The full potential of ECs can be exploited by optimizing their operation through a centralized coordination handled by an aggregator. However, this approach comes with many drawbacks (e.g., conflict of interests between members and the aggregator, and privacy and memory concerns). In the attempt to partially address these issues, this work presents a bi-level approach for optimizing the operation of the ECs, with the aggregator acting as the leader and the community members as the followers, with the objective of both parties being the minimization of operational costs. The one-leader-multiple-followers Stackelberg game model is established, where the leader gives the same price-based signals to all the followers that proceed to solve their problem. The upper level is optimized with the evolutionary algorithm PGS-COM, while the followers' problems are formulated as either LP or MILP. The problem is solved by optimizing both buying and selling prices for each time step within the optimization horizon. The approach is tested on ECs characterized by various types of prosumers (with/without PV, EV, BESS and DSM) for both a summer and winter day, using real electricity demand profiles specifically collected for this work. The results are compared to those obtained by a centralized approach and by the case when members are given the exact grid prices for the internal trade. The approach is proven to be effective when a wide range of diverse members with great flexibility is present. The results show that, in these cases, the total savings achieved by the proposed bi-level approach, compared to the costs incurred by independent members, are comparable to those of the centralized approach. Additionally, the proposed method for reducing the computational burden has been verified as efficient, as it achieves similar cost savings within a limited time.

Le comunità energetiche sono destinate ad assumere un ruolo di particolare importanza nella transizione energetica facilitando la diffusione di risorse derivanti da fonti rinnovabili. Il massimo potenziale può essere ottenuto attraverso l'ottimizzazione del loro funzionamento attuando un coordinamento centralizzato da parte dall'aggregatore. Tuttavia, questo approccio presenta alcuni limiti; a titolo esemplificativo il conflitto di interessi tra membri e aggregatore e problemi di privacy e memoria. Nel tentativo di affrontarli, seppur parzialmente, questo lavoro presenta un approccio bilivello per l'ottimizzazione del funzionamento della comunità energetica in cui l'aggregatore assume il ruolo di leader mentre i membri quello di followers. In questo contesto entrambe le parti hanno come obiettivo quello di minimizzare il proprio costo operativo. Si propone l'applicazione del modello di gioco di Stackelberg "one-leader-multi-followers" in cui il leader fornisce gli stessi segnali di prezzo a tutti i followers, che risolvono così il loro problema. Il livello superiore è ottimizzato con l'algoritmo evolutivo PGS-COM, mentre il problema dei membri è formulato attraverso un LP o un MILP. Nella risoluzione vengono ottimizzati sia i prezzi di acquisto che di vendita per ciascun intervallo temporale all'interno dell'orizzonte considerato. Il metodo è testato su comunità energetiche caratterizzate da diversi tipi di membri (con/senza PV, veicolo elettrico, sistema di accumulo, DSM) per il funzionamento invernale ed estivo, utlizzando profili di domanda elettrica reali acquisiti specificatamente per questo lavoro. I risultati vengono confrontati con quelli che si otterrebbero con un approccio centralizzato e nel caso in cui i membri agissero in modo indipendente. In termini di benefit per la comunità, l'approccio si è rivelato efficace quando sono presenti componenti di tipologie diverse caratterizzati da una grande flessibilità nella gestione delle loro risorse. I risultati mostrano che, in questi casi, il risparmio totale ottenuto con la formulazione bilivello, rispetto all'ipotesi in cui i membri agiscano in modo indipendente, è paragonabile con quello che si ottiene con l'approccio centralizzato. Infine, il metodo proposto per ridurre il costo computazionale si è rivelato efficiente poiché raggiunge risparmi simili in un tempo ridotto.

A bi-level optimization approach for the management of energy communities

BENAZZOLI, OTTAVIA
2023/2024

Abstract

Energy communities (ECs) are expected to play an essential role in the energy transition by facilitating the diffusion of renewable-based energy resources. The full potential of ECs can be exploited by optimizing their operation through a centralized coordination handled by an aggregator. However, this approach comes with many drawbacks (e.g., conflict of interests between members and the aggregator, and privacy and memory concerns). In the attempt to partially address these issues, this work presents a bi-level approach for optimizing the operation of the ECs, with the aggregator acting as the leader and the community members as the followers, with the objective of both parties being the minimization of operational costs. The one-leader-multiple-followers Stackelberg game model is established, where the leader gives the same price-based signals to all the followers that proceed to solve their problem. The upper level is optimized with the evolutionary algorithm PGS-COM, while the followers' problems are formulated as either LP or MILP. The problem is solved by optimizing both buying and selling prices for each time step within the optimization horizon. The approach is tested on ECs characterized by various types of prosumers (with/without PV, EV, BESS and DSM) for both a summer and winter day, using real electricity demand profiles specifically collected for this work. The results are compared to those obtained by a centralized approach and by the case when members are given the exact grid prices for the internal trade. The approach is proven to be effective when a wide range of diverse members with great flexibility is present. The results show that, in these cases, the total savings achieved by the proposed bi-level approach, compared to the costs incurred by independent members, are comparable to those of the centralized approach. Additionally, the proposed method for reducing the computational burden has been verified as efficient, as it achieves similar cost savings within a limited time.
DIPIERRO, VINCENZO
SOBIC, FILIP
ING - Scuola di Ingegneria Industriale e dell'Informazione
3-apr-2025
2023/2024
Le comunità energetiche sono destinate ad assumere un ruolo di particolare importanza nella transizione energetica facilitando la diffusione di risorse derivanti da fonti rinnovabili. Il massimo potenziale può essere ottenuto attraverso l'ottimizzazione del loro funzionamento attuando un coordinamento centralizzato da parte dall'aggregatore. Tuttavia, questo approccio presenta alcuni limiti; a titolo esemplificativo il conflitto di interessi tra membri e aggregatore e problemi di privacy e memoria. Nel tentativo di affrontarli, seppur parzialmente, questo lavoro presenta un approccio bilivello per l'ottimizzazione del funzionamento della comunità energetica in cui l'aggregatore assume il ruolo di leader mentre i membri quello di followers. In questo contesto entrambe le parti hanno come obiettivo quello di minimizzare il proprio costo operativo. Si propone l'applicazione del modello di gioco di Stackelberg "one-leader-multi-followers" in cui il leader fornisce gli stessi segnali di prezzo a tutti i followers, che risolvono così il loro problema. Il livello superiore è ottimizzato con l'algoritmo evolutivo PGS-COM, mentre il problema dei membri è formulato attraverso un LP o un MILP. Nella risoluzione vengono ottimizzati sia i prezzi di acquisto che di vendita per ciascun intervallo temporale all'interno dell'orizzonte considerato. Il metodo è testato su comunità energetiche caratterizzate da diversi tipi di membri (con/senza PV, veicolo elettrico, sistema di accumulo, DSM) per il funzionamento invernale ed estivo, utlizzando profili di domanda elettrica reali acquisiti specificatamente per questo lavoro. I risultati vengono confrontati con quelli che si otterrebbero con un approccio centralizzato e nel caso in cui i membri agissero in modo indipendente. In termini di benefit per la comunità, l'approccio si è rivelato efficace quando sono presenti componenti di tipologie diverse caratterizzati da una grande flessibilità nella gestione delle loro risorse. I risultati mostrano che, in questi casi, il risparmio totale ottenuto con la formulazione bilivello, rispetto all'ipotesi in cui i membri agiscano in modo indipendente, è paragonabile con quello che si ottiene con l'approccio centralizzato. Infine, il metodo proposto per ridurre il costo computazionale si è rivelato efficiente poiché raggiunge risparmi simili in un tempo ridotto.
File allegati
File Dimensione Formato  
2025_04_Benazzoli_Thesis.pdf

non accessibile

Descrizione: tesi
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF   Visualizza/Apri
2025_04_Benazzoli_Executive_Summary.pdf

non accessibile

Descrizione: executive summary
Dimensione 647.57 kB
Formato Adobe PDF
647.57 kB Adobe PDF   Visualizza/Apri

I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10589/236253