Metastatic Castrate-Resistant Prostate Cancer (mCRPC) remains one of the most challenging oncological conditions due to the inevitable emergence of resistance to therapy. Traditional treatment strategies often fail in the long term, as they exert continuous selective pressure that promotes the proliferation of resistant tumor cell populations. In this thesis, we explore an alternative approach—adaptive therapy—which leverages insights from Evolutionary Game Theory (EGT) to manage tumor evolution more effectively. A fundamental aspect of our study is the in-depth dynamical systems analysis of tumor cell populations under different treatment strategies. By extending the mathematical models proposed by Zhang et al. (2017, 2022), we introduce a novel formulation incorporating a resistance emergence parameter δ, which reflects the progressive adaptation of tumor cells. Through rigorous analytical techniques, we derive expressions for equilibrium points and characterize their stability, providing a comprehensive understanding of the long-term behavior of the system under various therapeutic scenarios. Additionally, we examine the trajectories of tumor dynamics in phase space, shedding light on the competitive interactions between sensitive and resistant cells. To validate our theoretical findings, we conduct extensive simulations on five representative patient cases, each corresponding to a different initial tumor composition. These simulations illustrate how resistance emergence significantly alters treatment outcomes and reveal the importance of carefully selecting the timing of therapy initiation (𝑡_firstAbi) to maintain long-term tumor control. Our results demonstrate that delaying therapy initiation, rather than starting immediately, can prevent the premature selection of resistant cells, ultimately improving patient outcomes. Finally, we briefly explore the implications of allowing δ to vary over time, confirming that the general principles of adaptive therapy remain valid even in more complex resistance dynamics. These findings contribute to a growing body of research advocating for evolutionary-driven treatment strategies that aim to prolong therapy effectiveness by leveraging competitive interactions within the tumor microenvironment.
Il cancro prostatico metastatico resistente alla castrazione (mCRPC) rappresenta una delle sfide più difficili in oncologia a causa dell’inevitabile insorgenza della resistenza ai trattamenti. Le terapie convenzionali spesso falliscono nel lungo periodo, poiché esercitano una pressione selettiva che favorisce la proliferazione delle cellule tumorali resistenti. In questa tesi, analizziamo un approccio alternativo basato sulla Terapia Adattiva, una strategia ispirata alla Teoria dei Giochi Evolutivi (EGT) per modulare l’evoluzione del tumore e prolungare l’efficacia terapeutica. È stata condotta un’analisi approfondita del sistema dinamico che descrive la crescita delle cellule tumorali, estendendo i modelli matematici di Zhang et al. (2017, 2022) con l’introduzione di un parametro di resistenza emergente δ. Abbiamo derivato espressioni analitiche per gli equilibri e studiato la loro stabilità, caratterizzando il comportamento a lungo termine del sistema sotto diverse strategie terapeutiche. Le simulazioni di cinque pazienti "simulati" mostrano come la resistenza emergente influenzi il successo della terapia e sottolineano l’importanza della scelta ottimale del tempo di inizio della terapia (t_firstAbi). In particolare, ritardare l’inizio del trattamento può prevenire la selezione precoce di cellule resistenti, migliorando il controllo del tumore. Infine, abbiamo esplorato scenari in cui δ varia nel tempo, confermando che i principi generali della terapia adattiva rimangono validi anche in condizioni più complesse. Questi risultati supportano l’idea che strategie terapeutiche basate sull’evoluzione possano offrire un nuovo paradigma per il trattamento del cancro, bilanciando il controllo della malattia con la prevenzione della resistenza.
A game theory approach to adaptive therapy in metastatic castrate-resistant prostate cancer
Saterini, Matteo
2023/2024
Abstract
Metastatic Castrate-Resistant Prostate Cancer (mCRPC) remains one of the most challenging oncological conditions due to the inevitable emergence of resistance to therapy. Traditional treatment strategies often fail in the long term, as they exert continuous selective pressure that promotes the proliferation of resistant tumor cell populations. In this thesis, we explore an alternative approach—adaptive therapy—which leverages insights from Evolutionary Game Theory (EGT) to manage tumor evolution more effectively. A fundamental aspect of our study is the in-depth dynamical systems analysis of tumor cell populations under different treatment strategies. By extending the mathematical models proposed by Zhang et al. (2017, 2022), we introduce a novel formulation incorporating a resistance emergence parameter δ, which reflects the progressive adaptation of tumor cells. Through rigorous analytical techniques, we derive expressions for equilibrium points and characterize their stability, providing a comprehensive understanding of the long-term behavior of the system under various therapeutic scenarios. Additionally, we examine the trajectories of tumor dynamics in phase space, shedding light on the competitive interactions between sensitive and resistant cells. To validate our theoretical findings, we conduct extensive simulations on five representative patient cases, each corresponding to a different initial tumor composition. These simulations illustrate how resistance emergence significantly alters treatment outcomes and reveal the importance of carefully selecting the timing of therapy initiation (𝑡_firstAbi) to maintain long-term tumor control. Our results demonstrate that delaying therapy initiation, rather than starting immediately, can prevent the premature selection of resistant cells, ultimately improving patient outcomes. Finally, we briefly explore the implications of allowing δ to vary over time, confirming that the general principles of adaptive therapy remain valid even in more complex resistance dynamics. These findings contribute to a growing body of research advocating for evolutionary-driven treatment strategies that aim to prolong therapy effectiveness by leveraging competitive interactions within the tumor microenvironment.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Saterini.pdf
accessibile in internet solo dagli utenti autorizzati
Descrizione: Tesi
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236256