The present dissertation explores the mechanical response and structural characteristics of Varioshore TPU, a new thermoplastic polyurethane filament with tunable density through temperature-induced foaming, in the application of additive manufacturing by material extrusion. The primary objective of the present research is to correlate the interconnections between printing parameters, foaming kinetics, and mechanical behaviour of 3D-printed structures produced using the aforementioned material, with particular emphasis placed on the phenomenon of layer-to-layer adhesion. The experimental activities were conducted in collaboration between Plasmics GmbH, a young Austrian company specializing in novel 3D printing technologies, and the Transfercenter für Kunststofftechnik GmbH (TCKT), one of the top research institutes in polymer science and technology in Austria. A mechanical characterization was carried out along with microscopy analysis of the internal structure to assess the morphology of the foamed structures and investigate fracture surfaces, with the aim of determining the contribution of the printing process to the failure mechanisms. The findings highlight the significant influence of the extrusion temperature on both the foaming degree and mechanical properties of the printed components. Foaming onset temperature was found to play a critical role in the density and elastic modulus of the structures, while the interlayer adhesion strength was found to be higher than expected. The experimental results demonstrate that strand deposition parameter and extrusion temperature optimization are of paramount importance in achieving maximum mechanical performance of Varioshore TPU components. This study contributes to the current knowledge of additive manufacturing of foamed polymers and provides valuable information for the design and production of lightweight, flexible structures. The results create opportunities for future studies on microstructural characterization and long-term mechanical performance of 3D-printed Varioshore TPU components.
La presente tesi esplora la risposta meccanica e le caratteristiche strutturali di Varioshore TPU, un nuovo filamento di poliuretano termoplastico con densità regolabile tramite schiumatura indotta dalla temperatura, nell'applicazione della fabbricazione additiva mediante estrusione di materiale. L'obiettivo primario della presente ricerca è quello di correlare l’influenza dei parametri di stampa, la cinetica di schiumatura e il comportamento meccanico delle strutture stampate in 3D prodotte con il suddetto materiale, con particolare attenzione al fenomeno dell'adesione strato-strato. Le attività sperimentali sono state condotte in collaborazione tra Plasmics GmbH, una giovane azienda austriaca specializzata in nuove tecnologie di stampa 3D, e il Transfercenter für Kunststofftechnik GmbH (TCKT), uno dei principali istituti di ricerca in scienza e tecnologia dei polimeri in Austria. È stata effettuata una caratterizzazione meccanica e un'analisi al microscopio della struttura interna per valutare la morfologia delle strutture espanse e indagare le superfici di frattura, con l'obiettivo di determinare il contributo del processo di stampa ai meccanismi di rottura. I risultati evidenziano l'influenza significativa della temperatura di estrusione sia sul grado di schiumatura che sulle proprietà meccaniche dei componenti stampati. La temperatura di insorgenza della schiuma è risultata avere un ruolo critico nella densità e nel modulo elastico delle strutture, mentre la forza di adesione interstrato è risultata più elevata del previsto. I risultati sperimentali dimostrano che l'ottimizzazione dei parametri di deposizione dei filamenti e della temperatura di estrusione sono di fondamentale importanza per ottenere le massime prestazioni meccaniche dei componenti in TPU Varioshore. Questo studio contribuisce alle attuali conoscenze sulla produzione additiva di polimeri espansi e fornisce informazioni per la progettazione e la produzione di strutture leggere e flessibili. I risultati creano opportunità per studi futuri sulla caratterizzazione microstrutturale e sulle prestazioni meccaniche a lungo termine dei componenti in TPU Varioshore stampati in 3D.
Layer-to-layer adhesion of 3D-printed foams
Scanzi, Bruno
2023/2024
Abstract
The present dissertation explores the mechanical response and structural characteristics of Varioshore TPU, a new thermoplastic polyurethane filament with tunable density through temperature-induced foaming, in the application of additive manufacturing by material extrusion. The primary objective of the present research is to correlate the interconnections between printing parameters, foaming kinetics, and mechanical behaviour of 3D-printed structures produced using the aforementioned material, with particular emphasis placed on the phenomenon of layer-to-layer adhesion. The experimental activities were conducted in collaboration between Plasmics GmbH, a young Austrian company specializing in novel 3D printing technologies, and the Transfercenter für Kunststofftechnik GmbH (TCKT), one of the top research institutes in polymer science and technology in Austria. A mechanical characterization was carried out along with microscopy analysis of the internal structure to assess the morphology of the foamed structures and investigate fracture surfaces, with the aim of determining the contribution of the printing process to the failure mechanisms. The findings highlight the significant influence of the extrusion temperature on both the foaming degree and mechanical properties of the printed components. Foaming onset temperature was found to play a critical role in the density and elastic modulus of the structures, while the interlayer adhesion strength was found to be higher than expected. The experimental results demonstrate that strand deposition parameter and extrusion temperature optimization are of paramount importance in achieving maximum mechanical performance of Varioshore TPU components. This study contributes to the current knowledge of additive manufacturing of foamed polymers and provides valuable information for the design and production of lightweight, flexible structures. The results create opportunities for future studies on microstructural characterization and long-term mechanical performance of 3D-printed Varioshore TPU components.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Scanzi.pdf
solo utenti autorizzati a partire dal 13/03/2026
Dimensione
3.76 MB
Formato
Adobe PDF
|
3.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236263