The importance of hydrogen as an energy vector is growing to address fossil fuel scarcity and the transition to a sustainable, low-carbon economy. However, storing and transporting hydrogen presents challenges. In gas infrastructures, filled elastomers are used as seals, O-rings, and gaskets to prevent leaks and maintain system efficiency. These materials must withstand temperatures from -70°C to 85°C and pressures up to 100 MPa. Prolonged exposure to high-pressure hydrogen can lead to significant permeation that may affect the material mechanical properties. In addition, other problems like significant swelling, reduction in sealing capability, leaks and rapid gas decompression failure may arise. The Polymer Engineering Laboratory (PolyEngLab) of Politecnico di Milano is collaborating with the Laboratory of Energy Storage and Conversion (LabX) to develop a system for exposing polymer specimens to hydrogen pressures up to 30 MPa and temperatures up to 70°C. Since this setup is still in progress, a preliminary experimental campaign was conducted. This work evaluates changes in the mechanical behaviour of a carbon black-filled Nitrile-Butadiene rubber (NBR) and a carbon black-filled Hydrogenated Nitrile-Butadiene rubber (HNBR) after exposure to pressurized hydrogen at ambient temperature through tensile and fracture tests. Additionally, a silica-filled fluorocarbon elastomer (FKM) and a carbon black-filled Ethylene-Propylene-Diene Monomer (EPDM) were characterized after prolonged heating at 70°C in air through uniaxial tensile and compressive tests, as well as compression set and hardness measurements, as a preliminary characterization of these materials. The results provide a valuable reference for defining testing conditions for future accelerated experiments.
L'importanza dell'idrogeno come vettore energetico sta crescendo per far fronte alla scarsità di combustibili fossili e favorire la transizione verso un’economia sostenibile e a basse emissioni di carbonio. Tuttavia, lo stoccaggio e il trasporto dell’idrogeno presentano diverse sfide. Nelle infrastrutture del gas, gli elastomeri caricati sono fondamentali in componenti critici come guarnizioni, O-ring e gasket per prevenire perdite e mantenere l'efficienza del sistema. Questi materiali devono resistere a temperature comprese tra -70°C e 85°C e a pressioni fino a 100 MPa. L'esposizione prolungata all’idrogeno ad alta pressione può portare a una significativa permeazione del gas, alterazioni delle proprietà meccaniche, rigonfiamento, riduzione delle prestazioni di tenuta, perdite e, in alcuni casi, cedimenti da decompressione rapida. Il Polymer Engineering Laboratory (PolyEngLab) del Politecnico di Milano collabora con il Laboratory of Energy Storage and Conversion (LabX) per sviluppare un sistema in grado di esporre provini polimerici a pressioni di idrogeno fino a 30 MPa e temperature fino a 70°C. Poiché questo sistema è ancora in fase di sviluppo, è stata condotta una campagna sperimentale preliminare. Questo lavoro valuta le variazioni nel comportamento meccanico di una gomma Nitrile-Butadiene (NBR) caricata con nerofumo e di una gomma Nitrile-Butadiene Idrogenata (HNBR) dopo l'esposizione a idrogeno in pressione a temperatura ambiente, attraverso prove di trazione e frattura. Inoltre, è stata effettuata una caratterizzazione di un elastomero fluorurato (FKM) caricato con silice e di un elastomero etilene-propilene-diene (EPDM) caricato con nerofumo dopo un riscaldamento prolungato a 70°C in aria a pressione atmosferica, mediante prove di trazione, compressione, compression set e misurazioni di durezza. I risultati ottenuti rappresentano un valido riferimento per la definizione delle condizioni di prova per futuri test accelerati.
Effect of temperature and pressurized hydrogen exposure on the mechanical properties of filled elastomers
DAMATO, FEDERICO
2023/2024
Abstract
The importance of hydrogen as an energy vector is growing to address fossil fuel scarcity and the transition to a sustainable, low-carbon economy. However, storing and transporting hydrogen presents challenges. In gas infrastructures, filled elastomers are used as seals, O-rings, and gaskets to prevent leaks and maintain system efficiency. These materials must withstand temperatures from -70°C to 85°C and pressures up to 100 MPa. Prolonged exposure to high-pressure hydrogen can lead to significant permeation that may affect the material mechanical properties. In addition, other problems like significant swelling, reduction in sealing capability, leaks and rapid gas decompression failure may arise. The Polymer Engineering Laboratory (PolyEngLab) of Politecnico di Milano is collaborating with the Laboratory of Energy Storage and Conversion (LabX) to develop a system for exposing polymer specimens to hydrogen pressures up to 30 MPa and temperatures up to 70°C. Since this setup is still in progress, a preliminary experimental campaign was conducted. This work evaluates changes in the mechanical behaviour of a carbon black-filled Nitrile-Butadiene rubber (NBR) and a carbon black-filled Hydrogenated Nitrile-Butadiene rubber (HNBR) after exposure to pressurized hydrogen at ambient temperature through tensile and fracture tests. Additionally, a silica-filled fluorocarbon elastomer (FKM) and a carbon black-filled Ethylene-Propylene-Diene Monomer (EPDM) were characterized after prolonged heating at 70°C in air through uniaxial tensile and compressive tests, as well as compression set and hardness measurements, as a preliminary characterization of these materials. The results provide a valuable reference for defining testing conditions for future accelerated experiments.File | Dimensione | Formato | |
---|---|---|---|
TESI_DAMATO.pdf
non accessibile
Descrizione: testo della tesi
Dimensione
4.01 MB
Formato
Adobe PDF
|
4.01 MB | Adobe PDF | Visualizza/Apri |
EXECUTIVE SUMMARY_DAMATO.pdf
non accessibile
Descrizione: executive summary della tesi
Dimensione
737.99 kB
Formato
Adobe PDF
|
737.99 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236265