Thoracic hyperkyphosis is an excessive curvature of the thoracic spine, commonly defined as greater than 40-45°, with an incidence ranging from 20% to 40%. It is associated with conditions such as Scheuermann's disease and osteoporosis, though many cases are idiopathic or age-related. Hyperkyphosis reduces physical performance, limits daily activities, lowers quality of life, and increases fall risk in the elderly. An excessive kyphosis can also occur after spine surgery, at the adjacent level to a long posterior fixation, leading to a condition known as Proximal Junctional Kyphosis (PJK), with incidence up to 40%, that can require revision surgery. Understanding spine biomechanics, particularly in the context of hyperkyphosis, is therefore essential. This study aimed to develop multiple T1-T12 Finite Element Models representing a wide range of thoracic kyphosis and to investigate whether posterior tethering devices could offer a safe and effective alternative (or aid) to spinal fusion and fixation surgery. T1-T12 CAD models with varying kyphosis were generated, followed by the calibration of material properties on isolated Functional Spinal Units against experimental resection studies. The calibrated materials were then extended to the complete models, whose kinematics and dynamics were validated under progressively complex loads, including axial compression and bending moments, against in vitro and in vivo studies. A computational model of the tethering device, implementing experimental force-strain data, was then created and validated. The study then focused on analyzing the biomechanics of Posterior Dynamic Pedicle Tethering. The device was implanted at multiple levels in a highly kyphotic model, and key biomechanical variables, including sagittal correction, kinematics, dynamics, and soft tissue loads, were evaluated under different pre-tension levels. Results demonstrated the model's capability to capture essential biomechanical aspects, supporting the technique as a valuable approach for managing kyphotic deformities.
L'ipercifosi è una curvatura eccessiva della colonna toracica, tipicamente definita come superiore a 40-45°, con un'incidenza tra il 20% e il 40%. È associata a condizioni come la cifosi di Scheuermann e l'osteoporosi, sebbene molti casi siano idiopatici o legati all'età. La cifosi riduce le prestazioni fisiche, peggiora la qualità della vita e aumenta il rischio di cadute negli anziani. Una cifosi eccessiva può anche verificarsi a livello adiacente ad una lunga fissazione posteriore, portando a una condizione nota come Proximal Junctional Kyphosis (PJK), con un'incidenza fino al 40%, che può richiedere un intervento di revisione. Pertanto, comprendere la biomeccanica della colonna vertebrale, in particolare nel contesto della cifosi, è essenziale. Lo scopo di questo studio è stato sviluppare modelli agli elementi finiti del tratto T1-T12 che rappresentassero un ampio intervallo di cifosi e indagare se i dispositivi di tethering, applicati posteriormente, possano essere un'alternativa sicura ed efficace (o un supporto) alla chirurgia di fusione e fissazione. Sono stati generati modelli CAD di T1-T12 con diverse cifosi, seguiti dalla calibrazione dei materiali su Unità Funzionali isolate, grazie a studi sperimentali di resezione. I materiali calibrati sono stati quindi estesi ai modelli completi, la cui cinematica e dinamica sono state validate con carichi complessi, inclusi compressione assiale e momenti di flessione, confrontandoli con studi in vitro e in vivo. È stato poi creato e validato un modello computazionale del dispositivo di tethering, implementando dati sperimentali di forza-deformazione. Lo studio si è poi concentrato sull'analisi biomeccanica della tecnica di Posterior Dynamic Pedicle Tethering. Il dispositivo è stato impiantato su più livelli in un modello ipercifotico, e sono state valutate variabili quali la correzione sagittale, la cinematica, la dinamica e le sollecitazioni sui tessuti, a diversi livelli di pre-tensionamento. I risultati hanno dimostrato la capacità del modello di catturare aspetti biomeccanici essenziali, supportando la tecnica come un approccio utile per la gestione delle deformità cifotiche.
Parametric finite element assessment of a novel posterior dynamic tethering technique for kyphosis correction
Piccoli, Andrea
2023/2024
Abstract
Thoracic hyperkyphosis is an excessive curvature of the thoracic spine, commonly defined as greater than 40-45°, with an incidence ranging from 20% to 40%. It is associated with conditions such as Scheuermann's disease and osteoporosis, though many cases are idiopathic or age-related. Hyperkyphosis reduces physical performance, limits daily activities, lowers quality of life, and increases fall risk in the elderly. An excessive kyphosis can also occur after spine surgery, at the adjacent level to a long posterior fixation, leading to a condition known as Proximal Junctional Kyphosis (PJK), with incidence up to 40%, that can require revision surgery. Understanding spine biomechanics, particularly in the context of hyperkyphosis, is therefore essential. This study aimed to develop multiple T1-T12 Finite Element Models representing a wide range of thoracic kyphosis and to investigate whether posterior tethering devices could offer a safe and effective alternative (or aid) to spinal fusion and fixation surgery. T1-T12 CAD models with varying kyphosis were generated, followed by the calibration of material properties on isolated Functional Spinal Units against experimental resection studies. The calibrated materials were then extended to the complete models, whose kinematics and dynamics were validated under progressively complex loads, including axial compression and bending moments, against in vitro and in vivo studies. A computational model of the tethering device, implementing experimental force-strain data, was then created and validated. The study then focused on analyzing the biomechanics of Posterior Dynamic Pedicle Tethering. The device was implanted at multiple levels in a highly kyphotic model, and key biomechanical variables, including sagittal correction, kinematics, dynamics, and soft tissue loads, were evaluated under different pre-tension levels. Results demonstrated the model's capability to capture essential biomechanical aspects, supporting the technique as a valuable approach for managing kyphotic deformities.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Piccoli_Executive Summary.pdf
non accessibile
Dimensione
4.78 MB
Formato
Adobe PDF
|
4.78 MB | Adobe PDF | Visualizza/Apri |
2025_04_Piccoli_Tesi.pdf
non accessibile
Dimensione
29.9 MB
Formato
Adobe PDF
|
29.9 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236276