Unfitted finite element methods (FEMs) are powerful tools for addressing challenges related to deformable and moving surfaces, particularly when large deformations are involved. These methods are especially relevant for studying cell migration in 3D environments. In this work, the focus is on freely swimming cells in a 3D viscous fluid, a scenario encountered by immune cells like leukocytes in the bloodstream or cancer cells navigating complex 3D environments. Self-sustained cell motility arises from the contractility and deformability of the actomyosin cortex, a dynamic system that enables cells to generate and adapt their movement. The application of Unfitted FEMs to cell migration is natural, as these methods excel at handling complex and dynamic geometries. In this project, a novel and robust Unfitted FEM is introduced, designed to address coupled surface-bulk viscous flows and its application to 3D cell migration. The finite element discretisation combines the Aggregated Finite Element Method for the bulk phases with the Trace Finite Element Method for the surface problem. Numerical results are presented, demonstrating how migration is influenced by the viscosity of cortex and the activity of the cortical layer, while viscosities of the different fluid phases and the boundary conditions don't affect the swimming velocity. These findings provide valuable insights into the mechanics of cell migration and its dependence on environmental factors.
Gli Unfitted Finite Element Methods (FEMs) sono strumenti efficaci per affrontare le sfide legate alla modellizzazione di superfici in movimento e deformabili, soprattutto in presenza di grandi cambiamenti di forma. Questi metodi si rivelano particolarmente utili nello studio della migrazione cellulare in ambienti tridimensionali, un processo fondamentale per molte dinamiche biologiche, uno scenario tipico per cellule immunitarie come i leucociti o per cellule tumorali che si muovono in ambienti complessi. Il movimento delle cellule è regolato dalla loro corteccia actomiosinica, una rete dinamica che ne controlla contrattilità e deformabilità. Questa struttura consente alle cellule di generare e adattare il proprio moto in risposta all’ambiente circostante. L’uso degli Unfitted FEMs per modellare questo fenomeno è particolarmente vantaggioso, poiché questi metodi gestiscono in modo naturale geometrie complesse e in continua evoluzione, senza la necessità di adattare la mesh ad ogni istante. In questo lavoro viene introdotto un nuovo schema numerico basato su Unfitted FEM, progettato per descrivere l'interazione tra la superficie della cellula e il fluido circostante in uno spazio tridimensionale. La discretizzazione combina l’Aggregated Finite Element Method per il dominio volumetrico con il Trace Finite Element Method per il problema sulla superficie della cellula, permettendo così di affrontare in modo efficace la dinamica accoppiata tra il fluido e la membrana cellulare. I risultati numerici ottenuti mostrano come la velocità di migrazione cellulare dipenda dalla viscosità della corteccia actomiosinica e dalla sua attività, mentre altri fattori, come la viscosità dei fluidi esterni o le condizioni al contorno, sembrano avere un impatto trascurabile. Queste osservazioni forniscono nuove informazioni sulla meccanica della motilità cellulare e sulle sue interazioni con l’ambiente circostante.
Computational modeling of cell migration in a viscous fluid using unfitted finite element methods
GATTI, MARTINA
2023/2024
Abstract
Unfitted finite element methods (FEMs) are powerful tools for addressing challenges related to deformable and moving surfaces, particularly when large deformations are involved. These methods are especially relevant for studying cell migration in 3D environments. In this work, the focus is on freely swimming cells in a 3D viscous fluid, a scenario encountered by immune cells like leukocytes in the bloodstream or cancer cells navigating complex 3D environments. Self-sustained cell motility arises from the contractility and deformability of the actomyosin cortex, a dynamic system that enables cells to generate and adapt their movement. The application of Unfitted FEMs to cell migration is natural, as these methods excel at handling complex and dynamic geometries. In this project, a novel and robust Unfitted FEM is introduced, designed to address coupled surface-bulk viscous flows and its application to 3D cell migration. The finite element discretisation combines the Aggregated Finite Element Method for the bulk phases with the Trace Finite Element Method for the surface problem. Numerical results are presented, demonstrating how migration is influenced by the viscosity of cortex and the activity of the cortical layer, while viscosities of the different fluid phases and the boundary conditions don't affect the swimming velocity. These findings provide valuable insights into the mechanics of cell migration and its dependence on environmental factors.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Gatti_Martina_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
998.3 kB
Formato
Adobe PDF
|
998.3 kB | Adobe PDF | Visualizza/Apri |
2025_04_Gatti_Martina_Thesis.pdf
accessibile in internet per tutti
Descrizione: Thesis
Dimensione
4.29 MB
Formato
Adobe PDF
|
4.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236288