The growing importance of On-Orbit Servicing (OOS) technologies is driving advancements in tools and methods to support sustainable space operations. This study focuses on Geostationary Earth Orbit (GEO), where many OOS missions are conducted, due to the presence of highly valuable assets. In this framework, this research first develops an analytical model of the relative motion perturbed by the differential Solar Radiation Pressure (SRP) capable of providing a general insight into the evolution of the uncontrolled motion for the first 5 to ten orbits. Secondly, a safety concept to leverage passive safety using eccentricity/inclination separation is developed, taking into account the predicted effect of the large differential SRP acting in GEO. The Hill Clohessy Wiltshire (HCW) equations behave like a sharp pass-band filter and this can be exploited to derive simple formulations for non-conservative relative perturbations, as it was done for differential aerodynamic drag in Low Earth Orbit (LEO). A general solution to the HCW equations, when forced by a complete empirical disturbance (accounting for the whole 9-parameters set) is obtained by mirroring the integration procedure of the homogeneous system. In the specific case of differential SRP, the coefficients of the empirical forcing term are retrieved from the geometry of the Sun position and the basic cannonball model applied to absolute SRP. The perturbation model is validated both theoretically and numerically through comparisons with similar approaches in the literature and an absolute orbital propagator. The developed model of the perturbed motion merges the advantages of working in the Cartesian and Relative Orbital Elements (ROE) frameworks: introduces negligible linearisation errors, provides a general geometric interpretation of the movement of the ROE under the influence of the perturbation, allows linking characteristic of the perturbed trajectory to the starting time of the Rendezvous (RV), and offers a very simple ROE-based formulation compared to other models from the literature. Despite this simplicity, the model can be adapted to predict the motion on larger time spans by adapting the coefficients of the empirical acceleration to the current angles of the Sun. Furthermore, this research focuses on the design of a RV for OOS missions in GEO. Given the criticality of these operations, a new safety concept for passive safety of the perturbed uncontrolled motion is developed. It leverages traditional Eccentricity Inclination (E/I) separation to ensure secure proximity operations respectively for bounded and unbounded (drifting) segments. Different guidance profiles are proposed. These exploit available n-pulses analytical manoeuvring schemes, such as tangential pulses, bounded orbits, and drift phases exploiting relative motion, were evaluated to optimize fuel efficiency and meet operational requirements. This research provides a validated and versatile toolset for designing efficient and safe servicing missions in GEO, paving the way for improved proximity operations and rendezvous strategies.
L’importanza crescente delle tecnologie di servicing in orbita (OOS) sta guidando lo sviluppo di strumenti e metodi per supportare operazioni spaziali sostenibili. Questo studio si concentra sull’orbita geostazionaria (GEO), dove vengono condotte molte missioni OOS a causa della presenza di asset di alto valore. In questo contesto, la ricerca sviluppa innanzitutto un modello analitico del moto relativo perturbato dalla pressione differenziale della radiazione solare (SRP), in grado di fornire una comprensione generale dell’evoluzione del moto non controllato nelle prime 5-10 orbite. In secondo luogo, viene sviluppato un concetto di sicurezza che sfrutta la separazione eccentricità/inclinazione per garantire una sicurezza passiva, tenendo conto dell’effetto previsto della forte SRP differenziale presente in GEO. Le equazioni di Hill-Clohessy-Wiltshire (HCW) si comportano come un filtro passabanda molto selettivo, e questa caratteristica può essere sfruttata per ottenere formulazioni semplificate per perturbazioni relative non conservative, come è stato fatto per la resistenza aerodinamica differenziale in orbita bassa (LEO). Una soluzione generale delle equazioni HCW, forzate da una perturbazione empirica completa (che considera l’intero set di 9 parametri), viene ottenuta seguendo una procedura di integrazione analoga a quella del sistema omogeneo. Nel caso specifico della pressione differenziale della radiazione solare (SRP), i coefficienti del termine forzante empirico sono ricavati dalla geometria della posizione del Sole e dal modello base "cannonball" applicato alla SRP assoluta. Il modello di perturbazione viene validato sia teoricamente che numericamente attraverso confronti con approcci simili presenti in letteratura e con un propagatore orbitale assoluto. Il modello sviluppato per il moto perturbato combina i vantaggi del framework Cartesiano e degli Elementi Orbitali Relativi (ROE): introduce errori di linearizzazione trascurabili, fornisce un’interpretazione geometrica generale dell’evoluzione dei ROE sotto l’influenza della perturbazione, permette di collegare le caratteristiche della traiettoria perturbata al tempo di inizio del rendezvous (RV) e offre una formulazione basata sui ROE molto semplice rispetto ad altri modelli presenti in letteratura. Nonostante questa semplicità, il modello può essere adattato per prevedere il moto su intervalli di tempo più lunghi, aggiornando i coefficienti dell’accelerazione empirica in funzione degli angoli attuali del Sole. Inoltre, questa ricerca si concentra sulla progettazione di un rendezvous per missioni di OOS in GEO. Data la criticità di queste operazioni, è stato sviluppato un nuovo concetto di sicurezza per garantire la sicurezza passiva del moto perturbato e non controllato. Questo approccio sfrutta la tradizionale separazione di eccentricità/inclinazione (E/I) per garantire operazioni di prossimità sicure sia per i segmenti confinati che per quelli non confinati (in deriva). Vengono proposti diversi profili di guida, che sfruttano schemi analitici di manovra con n impulsi, come impulsi tangenziali, orbite chiuse e fasi di deriva basate sul moto relativo, al fine di ottimizzare l’efficienza del consumo di propellente e soddisfare i requisiti operativi. Questa ricerca fornisce un set di strumenti validato e versatile per progettare missioni di servicing efficienti e sicure in GEO, aprendo la strada a strategie migliorate di operazioni di prossimità e rendezvous.
Perturbed relative trajectory design for on-orbit servicing to uncooperative targets in geostationary orbits
Costantini, Pietro
2023/2024
Abstract
The growing importance of On-Orbit Servicing (OOS) technologies is driving advancements in tools and methods to support sustainable space operations. This study focuses on Geostationary Earth Orbit (GEO), where many OOS missions are conducted, due to the presence of highly valuable assets. In this framework, this research first develops an analytical model of the relative motion perturbed by the differential Solar Radiation Pressure (SRP) capable of providing a general insight into the evolution of the uncontrolled motion for the first 5 to ten orbits. Secondly, a safety concept to leverage passive safety using eccentricity/inclination separation is developed, taking into account the predicted effect of the large differential SRP acting in GEO. The Hill Clohessy Wiltshire (HCW) equations behave like a sharp pass-band filter and this can be exploited to derive simple formulations for non-conservative relative perturbations, as it was done for differential aerodynamic drag in Low Earth Orbit (LEO). A general solution to the HCW equations, when forced by a complete empirical disturbance (accounting for the whole 9-parameters set) is obtained by mirroring the integration procedure of the homogeneous system. In the specific case of differential SRP, the coefficients of the empirical forcing term are retrieved from the geometry of the Sun position and the basic cannonball model applied to absolute SRP. The perturbation model is validated both theoretically and numerically through comparisons with similar approaches in the literature and an absolute orbital propagator. The developed model of the perturbed motion merges the advantages of working in the Cartesian and Relative Orbital Elements (ROE) frameworks: introduces negligible linearisation errors, provides a general geometric interpretation of the movement of the ROE under the influence of the perturbation, allows linking characteristic of the perturbed trajectory to the starting time of the Rendezvous (RV), and offers a very simple ROE-based formulation compared to other models from the literature. Despite this simplicity, the model can be adapted to predict the motion on larger time spans by adapting the coefficients of the empirical acceleration to the current angles of the Sun. Furthermore, this research focuses on the design of a RV for OOS missions in GEO. Given the criticality of these operations, a new safety concept for passive safety of the perturbed uncontrolled motion is developed. It leverages traditional Eccentricity Inclination (E/I) separation to ensure secure proximity operations respectively for bounded and unbounded (drifting) segments. Different guidance profiles are proposed. These exploit available n-pulses analytical manoeuvring schemes, such as tangential pulses, bounded orbits, and drift phases exploiting relative motion, were evaluated to optimize fuel efficiency and meet operational requirements. This research provides a validated and versatile toolset for designing efficient and safe servicing missions in GEO, paving the way for improved proximity operations and rendezvous strategies.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Costantini_Thesis.pdf
accessibile in internet per tutti
Descrizione: Thesis manuscript
Dimensione
10.29 MB
Formato
Adobe PDF
|
10.29 MB | Adobe PDF | Visualizza/Apri |
2025_04_Costantini_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Executive Summary
Dimensione
715.32 kB
Formato
Adobe PDF
|
715.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236296