The current Near Earth Objects (NEOs) population is estimated to include ∼25000 NEOs ranging in size from ∼140 m to ∼1 km. To date, only about 35% of those have been discovered. The remainder of the population may still represent a potential threat to Earth and its inhabitants due to the risk of collision. For this reason, every two years the Center for Near Earth Object Studies (CNEOS) releases a potential threat exercise which is discussed by experts in the field during the Planetary Defence Conferences. The aim is to analyse different scenarios which may unveil particular characteristics of these hazards and to be prepared in case an actual risk is detected. In this thesis, a response to the threat posed by asteroid 2024 PDC25, the hazardous scenario proposed for the Planetary Defence Conference 2025 (Stellenbosch, South Africa, May 5 - 9) is discussed. For the purpose of this simulation, the knowledge of the asteroid’s orbital state, as well as of its main physical properties, is subject to uncertainty. This condition closely resembles the challenges that would arise in a real threat scenario and is therefore worth studying. For this reason, this thesis proposes a deflection mission design that can robustly respond to different perturbations in the asteroid’s mean properties. The Multiple Kinetic Impactor strategy is selected for this purpose, mainly because of its high Technology Readiness Level (TRL). Firstly, a nominal mission design is proposed based on the achieved deflection through the analytical propagation of the impact-induced perturbations in the asteroid’s state. Subsequently, variations in the key kinematic and physical characteristics of 2024 PDC25 are applied to this nominal mission design, referred to as the baseline, to evaluate their effects. After uncertainty propagation via Monte Carlo method is performed, the mission’s robustness is assessed to determine whether it can effectively respond or not to different sources of uncertainty. The discussion leverages the Double Asteroid Redirection Test mission outcomes, particularly in estimating the momentum enhancement effect due to ejecta plume emission, while also considering the peculiar application to the 2024 PDC25 case. Finally, leveraging the uncertainties’ analysis results, modifications to the nominal mission design are proposed to enhance the robustness of the MKI deflection strategy. A robust alternative is identified as a six-spacecraft MKI mission.
Si stima che l’attuale popolazione di Near Earth Objects (NEOs) comprenda circa 25.000 NEO con dimensioni variabili tra 140 m e 1 km. Ad oggi, solo circa il 35% di questi è stato scoperto, mentre la parte rimanente della popolazione potrebbe ancora rappresentare una potenziale minaccia per la Terra e i suoi abitanti. Per questo motivo, ogni due anni il Center for Near Earth Object Studies rilascia un esercizio riguardante possibili scenari di collisione tra la Terra e un asteroide, che viene discusso dagli esperti del settore durante le Planetary Defence Conferences (PDC). L’obiettivo è quello di analizzare diversi casi, che possano rivelare particolari caratteristiche. In questa tesi, viene discussa una risposta alla minaccia posta dall’asteroide 2024 PDC25, lo scenario ipotizzato per la PDC 2025 (Stellenbosch, Sudafrica, 5-9 maggio). Ai fini di questa simulazione, la conoscenza dello stato orbitale dell’asteroide, così come delle sue principali proprietà fisiche, è soggetta a incertezze. Questa condizione rispecchia accuratamente lo scenario che si presenterebbe nel caso in cui una vera minaccia venisse rilevata ed è perciò meritevole di studio. Questa tesi propone una strategia per il design di una missione di deflessione capace di rispondere in modo robusto a diverse perturbazioni delle proprietà medie dell’asteroide. A tal fine, viene sfruttata la strategia del Multiple Kinetic Impactor (MKI) a causa del suo elevato livello di prontezza tecnologica (TRL). Dapprima viene proposto un design nominale della missione, basato sulla deflessione ottenuta attraverso la propagazione analitica delle perturbazioni indotte nello stato dell’asteroide dagli impatti. Successivamente, variazioni delle principali caratteristiche cinematiche e fisiche di 2024 PDC25 vengono applicate allo scenario nominale per valutarne gli effetti. Questa analisi fa leva sui risultati della missione DART, in particolare per la stima dell’incremento della quantità di moto dell’asteroide causata dall’emissione di materiale dall’asteroide. Dopo aver integrato la propagazione delle incertezze nella missione proposta sfruttando delle simulazioni basate sul metodo di Monte Carlo, la sua robustezza alle variazioni dei suddetti parametri viene analizzata. Infine, sfruttando i risultati dell’analisi delle incertezze, delle modifiche rispetto al design nominale vengono proposte, con lo scopo di migliorare la robustezza della strategia MKI. Una soluzione robusta viene identificata in una missione MKI che include sei satelliti.
Robust design of a multiple kinetic impactor mission for asteroid 2024 PDC25 threat mitigation
Basile, Elena
2024/2025
Abstract
The current Near Earth Objects (NEOs) population is estimated to include ∼25000 NEOs ranging in size from ∼140 m to ∼1 km. To date, only about 35% of those have been discovered. The remainder of the population may still represent a potential threat to Earth and its inhabitants due to the risk of collision. For this reason, every two years the Center for Near Earth Object Studies (CNEOS) releases a potential threat exercise which is discussed by experts in the field during the Planetary Defence Conferences. The aim is to analyse different scenarios which may unveil particular characteristics of these hazards and to be prepared in case an actual risk is detected. In this thesis, a response to the threat posed by asteroid 2024 PDC25, the hazardous scenario proposed for the Planetary Defence Conference 2025 (Stellenbosch, South Africa, May 5 - 9) is discussed. For the purpose of this simulation, the knowledge of the asteroid’s orbital state, as well as of its main physical properties, is subject to uncertainty. This condition closely resembles the challenges that would arise in a real threat scenario and is therefore worth studying. For this reason, this thesis proposes a deflection mission design that can robustly respond to different perturbations in the asteroid’s mean properties. The Multiple Kinetic Impactor strategy is selected for this purpose, mainly because of its high Technology Readiness Level (TRL). Firstly, a nominal mission design is proposed based on the achieved deflection through the analytical propagation of the impact-induced perturbations in the asteroid’s state. Subsequently, variations in the key kinematic and physical characteristics of 2024 PDC25 are applied to this nominal mission design, referred to as the baseline, to evaluate their effects. After uncertainty propagation via Monte Carlo method is performed, the mission’s robustness is assessed to determine whether it can effectively respond or not to different sources of uncertainty. The discussion leverages the Double Asteroid Redirection Test mission outcomes, particularly in estimating the momentum enhancement effect due to ejecta plume emission, while also considering the peculiar application to the 2024 PDC25 case. Finally, leveraging the uncertainties’ analysis results, modifications to the nominal mission design are proposed to enhance the robustness of the MKI deflection strategy. A robust alternative is identified as a six-spacecraft MKI mission.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Basile_Thesis.pdf
accessibile in internet per tutti
Descrizione: Testo Tesi
Dimensione
27.65 MB
Formato
Adobe PDF
|
27.65 MB | Adobe PDF | Visualizza/Apri |
2025_04_Basile_Executive_Summary.pdf
accessibile in internet per tutti
Descrizione: Testo Executive Summary
Dimensione
1.4 MB
Formato
Adobe PDF
|
1.4 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236307