Breast cancer is the most common cancer among women worldwide and is the leading cause of cancer-related deaths in females. Despite advancements in treatment, metastatic spread remains the primary driver for breast cancer mortality. A fundamental step of the metastatic cascade is the interaction between circulating tumor cells (CTCs) and the vascular endothelium. Metastasis oftern appears as a relapse 10-15 years after the primary tumor, with most cases occurring in women over 65 years old. Emerging evidence suggests that cardiovascular disease (CVD)-related vascular inflammation associated with aging, inflammation, may contribute but also accelerate to metastatic progression and recurrence. Chronic inflammation in the vasculature increases endothelial permeability and fosters a pro-adhesive endothelial phenotype, creating a more favorable environment for CTCs to infiltrate distant organs. This suggests that CVD-associated inflammation could act as a catalyst for earlier metastatic development, potentially shortening the latency period before relapse. This thesis explores the impact CVD-associated proinflammatory cytokines, TNF-alpha and IFN-gamma, on endothelial activation and breast cancer cell adhesion using a 3D microfluidic Vasculature-on-a-Chip model. The model mimics the vasculature with a cylindrical primary human endothelial monolayer within a fibrinectin-coated 3D human fibrin matrix, to study the effect of inflammation on endothelial barrier integrity and cancer cell adhesion under physiologically relevant shear stress conditions. Human umbilical vein endothelial cells (HUVECs) were cultured to form the 3D cylindrical endothelial lumen, while MDA-MB-231 cells, a highly metastatic triple-negative breast cancer cell line, were used to investigate cancer cell adhesion to endothelial cells under shear-stress. We found that treatment with 1 ng/mL TNF-alpha and IFN-gamma in combination caused significant endothelial barrier disruption, with increased permeability to 4 kDa dextran, endothelial junctional VE-Cadherin and actin filaments disorganization observed by immunofluorescence. Real-time live cell imaging of flow-based adhesion assays revealed a significant increase in MDA-MB-231 cell attachment to the inflamed endothelium compared to control conditions. These preliminary results suggest that human primary endothelial activation in CVD-related inflammatory conditions contribute to early steps of metastatic progression by increasing cancer cell adhesion under shear-stress to the cylindrical endothelial monolayer. The 3D Vasculature-on-a-Chip model provided a physiologically relevant platform to analyze the dynamic interactions between activated primary endothelial cells and breast cancer cells under flow conditions, offering a versatile tool for investigating CVD-inflammation effect on metastasis formation.
Il cancro alla mammella è il tumore più comune tra le donne a livello mondiale ed è la principale causa di morte per cancro nelle donne. Nonostante i progressi dei trattamenti, la diffusione metastatica rimane il principale fattore di mortalità per il carcinoma mammario. Un passaggio fondamentale nel processo metastatico è l’interazione tra le cellule tumorali circolanti (CTC) e l’endotelio vascolare. Le metastasi spesso si manifestano come recidive 10-15 anni dopo il tumore primario, con la maggior parte dei casi che si verifica in donne di età superiore ai 65 anni. Evidenze emergenti suggeriscono che l’infiammazione vascolare correlata alle malattie cardiovascolari (CVD), associata all’invecchiamento, possa contribuire e persino accelerare la progressione metastatica e la recidiva. L'infiammazione cronica del sistema vascolare aumenta la permeabilità endoteliale e promuove un fenotipo endoteliale pro-adesivo, creando un ambiente più favorevole per l'infiltrazione delle CTC negli organi secondari. Questo suggerisce che l’infiammazione associata alle CVD possa agire come catalizzatore per uno sviluppo metastatico più precoce, riducendo potenzialmente il periodo di latenza prima della recidiva. Questa tesi esplora l’impatto delle citochine proinfiammatorie correlate alle CVD, TNF-alfa e IFN-gamma, sull’attivazione endoteliale e sull’adesione delle cellule tumorali del seno utilizzando un modello microfluidico 3D Vasculature-on-a-Chip. Il modello riproduce la vascolarizzazione con un monostrato endoteliale cilindrico primario umano all'interno di una matrice di fibrina umana 3D rivestita con fibronectina, che permette di studiare l'effetto dell'infiammazione sull'integrità della barriera endoteliale e sull’adesione delle cellule tumorali in condizioni di stress da flusso fisiologicamente rilevanti. Le cellule endoteliali derivate dalle vene del cordone ombelicale umano (HUVECs) sono state coltivate per formare il lume endoteliale cilindrico 3D, mentre le cellule MDA-MB-231, una linea cellulare altamente metastatica di carcinoma mammario triplo negativo, sono state utilizzate per studiare l’adesione delle cellule tumorali alle cellule endoteliali sotto stress da flusso. Abbiamo osservato che il trattamento combinato con 1 ng/mL di TNF-alfa e IFN-gamma ha causato una significativa compromissione della barriera endoteliale, con un aumento della permeabilità al destrano da 4 kDa e una disorganizzazione delle giunzioni endoteliali VE-Caderina e dei filamenti di actina, come evidenziato dall'immunofluorescenza. Dallo studio dell’adesione delle cellule tumorali di mammella MDA-MB-231 all’endotelio effettuato con microscopia in tempo reale risulta un incremento di adesione all’endotelio infiammato rispetto alle condizioni di controllo. Questi risultati preliminari suggeriscono che l’attivazione dell’endotelio primario umano in condizioni infiammatorie correlate alle CVD contribuisca alle prime fasi della progressione metastatica, aumentando l’adesione delle cellule tumorali sotto stress da flusso al monostrato endoteliale cilindrico. Il modello 3D Vasculature-on-a-Chip ha fornito una piattaforma fisiologicamente rilevante per analizzare le interazioni dinamiche tra cellule endoteliali primarie attivate e cellule tumorali della mammella in condizioni di flusso, offrendo uno strumento versatile per studiare l'effetto dell’infiammazione cardiovascolare sulla formazione delle metastasi.
Exploring the Impact of cardiovascular disease-related inflammation on breast cancer metastasis using a 3D Vasculature-on-a-chip model
Pansera, Chiara
2023/2024
Abstract
Breast cancer is the most common cancer among women worldwide and is the leading cause of cancer-related deaths in females. Despite advancements in treatment, metastatic spread remains the primary driver for breast cancer mortality. A fundamental step of the metastatic cascade is the interaction between circulating tumor cells (CTCs) and the vascular endothelium. Metastasis oftern appears as a relapse 10-15 years after the primary tumor, with most cases occurring in women over 65 years old. Emerging evidence suggests that cardiovascular disease (CVD)-related vascular inflammation associated with aging, inflammation, may contribute but also accelerate to metastatic progression and recurrence. Chronic inflammation in the vasculature increases endothelial permeability and fosters a pro-adhesive endothelial phenotype, creating a more favorable environment for CTCs to infiltrate distant organs. This suggests that CVD-associated inflammation could act as a catalyst for earlier metastatic development, potentially shortening the latency period before relapse. This thesis explores the impact CVD-associated proinflammatory cytokines, TNF-alpha and IFN-gamma, on endothelial activation and breast cancer cell adhesion using a 3D microfluidic Vasculature-on-a-Chip model. The model mimics the vasculature with a cylindrical primary human endothelial monolayer within a fibrinectin-coated 3D human fibrin matrix, to study the effect of inflammation on endothelial barrier integrity and cancer cell adhesion under physiologically relevant shear stress conditions. Human umbilical vein endothelial cells (HUVECs) were cultured to form the 3D cylindrical endothelial lumen, while MDA-MB-231 cells, a highly metastatic triple-negative breast cancer cell line, were used to investigate cancer cell adhesion to endothelial cells under shear-stress. We found that treatment with 1 ng/mL TNF-alpha and IFN-gamma in combination caused significant endothelial barrier disruption, with increased permeability to 4 kDa dextran, endothelial junctional VE-Cadherin and actin filaments disorganization observed by immunofluorescence. Real-time live cell imaging of flow-based adhesion assays revealed a significant increase in MDA-MB-231 cell attachment to the inflamed endothelium compared to control conditions. These preliminary results suggest that human primary endothelial activation in CVD-related inflammatory conditions contribute to early steps of metastatic progression by increasing cancer cell adhesion under shear-stress to the cylindrical endothelial monolayer. The 3D Vasculature-on-a-Chip model provided a physiologically relevant platform to analyze the dynamic interactions between activated primary endothelial cells and breast cancer cells under flow conditions, offering a versatile tool for investigating CVD-inflammation effect on metastasis formation.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Pansera_Tesi.pdf
non accessibile
Descrizione: Tesi
Dimensione
7.3 MB
Formato
Adobe PDF
|
7.3 MB | Adobe PDF | Visualizza/Apri |
2025_04_Pansera_Executive Summary.pdf
non accessibile
Descrizione: Executive Summary
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236359