In the age of decarbonization bio methane produced through anaerobic gas fermentation is a promising solution to counteract the dependance of society on fossil resources and to alleviate the problem of renewable energy storage. The biological reduction of carbon dioxide into methane through green hydrogen offers the opportunity to recycle a useful carbon source, generally considered as wasted, into a valuable energy carrier deriving from sustainable technologies. This process is made possible by hydrogenotrophic methanogens, and their potential can be completely leveraged inside dedicated reactors in ex-situ applications. This study investigates the feasibility of biomethane production inside a pilot plant from a dual perspective, through the operation of a membrane biofilm reactor and the modeling of a bubble column reactor with suspended biomass. The suitability of a hollow fiber membrane module has been evaluated for a period of over 3 months to serve as an active substratum for transferring the feed gas to a biofilm cultivated on the membrane outer surface. Throughout the experimentation, the membrane module has been operated under different configurations, with special emphasis on the venting mode, where the periodic discharge of the gas accumulated inside the lumen of the fibers mitigated the side effect of the back diffusion of gases from the liquid. The best results were obtained in the flow through mode, where the non-diffused gas was continuously vented out from the membrane. The total feed gas supplied to the membrane inlet with a flow rate of 1.1 L/h close to stoichiometric conditions (H2:CO2 = 4.04:1), enabled to reach a maximum methane production per reactor volume of 0.05 m3N CH4/m3R/d with a methane content of 49% (v/v) in the head space. Along this phase the highest contribution of the back diffused methane in the lumen (3.3 0.5 LN/d) was observed, overcoming the methane outflow from the head space (0.3 0.2 LN/d). A simulation on the bubble column reactor was performed throughout a period of 50 days to provide support for the future start-up. The results showed that a mixed inoculum primarily composed of hydrogenotrophic methanogens exposed to a stepwise increase in the gas supply from 0.12 to 0.18 m3N/d can lead to a stable methane concentration over 80% (v/v) in the outflow with a maximum and durable rate of 0.35 m3N CH4/m3R/d.
Nell’epoca della decarbonizzazione, il biometano prodotto dalla fermentazione anaerobica dei gas rappresenta una soluzione promettente per contrastare la dipendenza della società dalle risorse fossili e per attenuare il problema dello stoccaggio dell’energia rinnovabile. La riduzione per via biologica dell’anidride carbonica a metano attraverso idrogeno verde offre l’opportunità di riciclare un’utile fonte di carbonio, generalmente considerata inutilizzabile, in un vettore energetico di valore derivante da tecnologie sostenibili. Questo processo è reso possibile da microorganismi metanigeni idrogenotrofi ed il loro potenziale può essere sfruttato a pieno in appositi reattori in applicazioni ex-situ. Questo studio indaga la fattibilità della produzione di biometano in un impianto pilota con una doppia prospettiva: attraverso il funzionamento di un reattore a membrana per la crescita di un biofilm e la modellazione di una colonna a biomassa sospesa. La funzionalità di un modulo a membrana con fibre cave è stata valutata per un periodo di oltre 3 mesi come substrato attivo per trasferire il gas al biofilm coltivato sulla sua superficie esterna. Nel corso della sperimentazione, il modulo a membrana è stato sottoposto a diverse configurazioni, con particolare attenzione alla modalità in degasaggio, dove il rilascio periodico del gas accumulato nel lumen delle fibre compensa l’effetto negativo della retrodiffusione dei gas dal liquido. I risultati migliori sono stati ottenuti nella fase a flusso continuo, dove il gas non trasferito veniva continuamente allontanato dalla membrana. Il flusso totale in alimento fornito all’ingresso della membrana con una portata di 1.1 L/h prossima alle condizioni stechiometriche (H2:CO2 = 4.04:1) ha permesso di raggiungere una massima produzione di metano per volume del reattore pari a 0.05 m3N CH4/m3R/d, con una percentuale in volume di metano del 49% (v/v) nello spazio di testa. Nel corso di questa fase è stato osservato il maggior contributo di metano retro diffuso nel lumen (3.3 0.5 LN/d), superando il flusso di metano in uscita dallo spazio di testa (0.3 0.2 LN/d). Una simulazione sulla colonna a bolle è stata eseguita per un periodo di 50 giorni per fornire supporto per il futuro avvio. I risultati mostrano che un inoculo misto, principalmente composto da idrogenotrofi metanigeni sottoposti ad un incremento a gradini della portata del gas in alimento da 0.12 a 0.18 m3N/d può portare ad una concentrazione di metano stabile sopra l’80% (v/v) nel flusso in uscita, con un rateo massimo e durevole di 0.35 m3N CH4/m3R/d.
Investigating the potential of biomethane production in combined membrane biofilm and column reactors
Cucci, Federico
2023/2024
Abstract
In the age of decarbonization bio methane produced through anaerobic gas fermentation is a promising solution to counteract the dependance of society on fossil resources and to alleviate the problem of renewable energy storage. The biological reduction of carbon dioxide into methane through green hydrogen offers the opportunity to recycle a useful carbon source, generally considered as wasted, into a valuable energy carrier deriving from sustainable technologies. This process is made possible by hydrogenotrophic methanogens, and their potential can be completely leveraged inside dedicated reactors in ex-situ applications. This study investigates the feasibility of biomethane production inside a pilot plant from a dual perspective, through the operation of a membrane biofilm reactor and the modeling of a bubble column reactor with suspended biomass. The suitability of a hollow fiber membrane module has been evaluated for a period of over 3 months to serve as an active substratum for transferring the feed gas to a biofilm cultivated on the membrane outer surface. Throughout the experimentation, the membrane module has been operated under different configurations, with special emphasis on the venting mode, where the periodic discharge of the gas accumulated inside the lumen of the fibers mitigated the side effect of the back diffusion of gases from the liquid. The best results were obtained in the flow through mode, where the non-diffused gas was continuously vented out from the membrane. The total feed gas supplied to the membrane inlet with a flow rate of 1.1 L/h close to stoichiometric conditions (H2:CO2 = 4.04:1), enabled to reach a maximum methane production per reactor volume of 0.05 m3N CH4/m3R/d with a methane content of 49% (v/v) in the head space. Along this phase the highest contribution of the back diffused methane in the lumen (3.3 0.5 LN/d) was observed, overcoming the methane outflow from the head space (0.3 0.2 LN/d). A simulation on the bubble column reactor was performed throughout a period of 50 days to provide support for the future start-up. The results showed that a mixed inoculum primarily composed of hydrogenotrophic methanogens exposed to a stepwise increase in the gas supply from 0.12 to 0.18 m3N/d can lead to a stable methane concentration over 80% (v/v) in the outflow with a maximum and durable rate of 0.35 m3N CH4/m3R/d.File | Dimensione | Formato | |
---|---|---|---|
2025_04_Cucci.pdf
non accessibile
Descrizione: Testo della tesi definitivo
Dimensione
3.84 MB
Formato
Adobe PDF
|
3.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in POLITesi sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/10589/236366